

GAIT ANALYSIS USING INERTIAL MEASUREMENT UNITS AS SENSORS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELİN KİRDİŞ GEMİCİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

BIOMEDICAL ENGINEERING

SEPTEMBER 2022

Approval of the thesis:

GAIT ANALYSIS USING INERTIAL MEASUREMENT UNITS AS

SENSORS

submitted by SELİN KİRDİŞ GEMİCİ in partial fulfillment of the requirements

for the degree of Master of Science in Biomedical Engineering, Middle East

Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Vilda Purutçuoğlu

Head of the Department, Biomedical Engineering

Assoc. Prof. Dr. Ergin Tönük

Supervisor, Biomedical Engineering, METU

Prof. Dr. Melek Güneş Yavuzer

Co-Supervisor, Institute of Health Sciences, Haliç University

Examining Committee Members:

Assoc. Prof. Dr. M. Bülent Özer

Mechanical Engineering, METU

Assoc. Prof. Dr. Ergin Tönük

Biomedical Engineering, METU

Prof. Dr. İlhami Kuru

Orthopedics and Traumatology, Başkent University

Asst. Prof. Dr. Altuğ Özçelikkale

Mechanical Engineering, METU

Asst. Prof. Dr. Kutluk Bilge Arıkan

Mechanical Engineering, TED University

Date: 16.09.2022

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name Last name : Selin Kirdiş Gemici

Signature :

v

ABSTRACT

GAIT ANALYSIS USING INERTIAL MEASUREMENT UNITS AS

SENSORS

Kirdiş Gemici, Selin

Master of Science, Biomedical Engineering

Supervisor: Assoc. Prof. Dr. Ergin Tönük

Co-Supervisor: Prof. Dr. Melek Güneş Yavuzer

September 2022, 132 pages

Examination of joint kinematics and kinetics after diseases that affect mobility

provides information about the movement capacity of the person. The most widely

used systems in this field are opto-electronic systems. However, these systems are

expensive and cannot be used outside the laboratory. For this reason, wearable

technologies (e.g. systems containing inertial sensors), which are relatively new

systems, have started to take the place of these systems. Wearable technologies are

more accessible to users and allow for long-term movement monitoring of the person

outside the laboratory.

Over the years, many researchers have made efforts to establish and improve the gait

analysis system at METU Biomechanics Laboratory. After the opto-electronic gait

analysis, the KISS system, a new Inertial Measurement Units based gait analysis

system was started to be developed.

In the first phase of this study, the kinematic and kinetic gait analysis systems were

developed using data acquired utilizing Inertial Measurement Units (IMUs) and

force plates. The software is based on an open source software, OpenSim.

vi

After adopting the software for available IMU sensors for lower and upper

extremities, the developed systems were examined and validated qualitatively by

testing single and multiple sensors with static test setups and additional experiments

with a human subject. Data was collected, processed and interpreted with the help of

a lower extremity test setup using seven IMUs. Moreover, gait and upper extremity

data were collected from a human subject.

The results of the kinematic gait analysis indicate that drift has been observed

because of the unwanted motion of the pelvis sensor (which is the main sensor)

during movement. The drift problem of the results was solved by using the slope

correction code. Overall, analysis results showed that patterns of the kinematic data

are consistent with the literature. The differences between some of the final results

and the values in the literature were thought to be due to sensor sensitivity and the

subject’s unique gait pattern.

Although the patterns of the kinetic data are also similar to the patterns of the data in

the literature, two main problems were observed. First, it was noticed that some of

the curves were in the reversed order of those in the literature. It is thought that this

is caused by a difference between the coordinate systems. Secondly, the

experimental results were found to be larger than those in the literature. However,

after analyzing the data of different subjects with different weights, it was seen that

the data was consistent in itself.

Keywords: Gait Analysis, Motion Analysis, Inertial Measurement Unit, OpenSim,

Force Plate

vii

ÖZ

EYLEMSİZLİK ÖLÇER KULLANARAK YÜRÜYÜŞ ANALİZİ

YAPILMASI

Kirdiş Gemici, Selin

Yüksek Lisans, Biyomedikal Mühendisliği

Tez Yöneticisi: Doç. Dr. Ergin Tönük

Ortak Tez Yöneticisi: Prof. Dr. Melek Güneş Yavuzer

Eylül 2022, 132 sayfa

Kişinin hareket fonksiyonunu etkileyen hastalıklar sonrası eklem kinematik ve

kinetiklerinin incelenmesi, kişinin hareket kapasitesi hakkında bilgi vermektedir. Bu

konuda en yaygın kullanılan sistemler optoelektronik sistemlerdir. Ancak bu

sistemler pahalıdır ve laboratuvar dışında kullanım imkanı bulunmamaktadır. Bu

nedenle göreceli olarak yeni sistemler olan giyilebilir teknolojiler(örneğin

eylemsizlik sensörü içeren sistemler) bu sistemlerin yerini almaya başlamıştır.

Giyilebilir teknolojiler kullanıcılar tarafından daha ulaşılabilirdir ve laboratuvar

dışında kişinin uzun süreli hareket takibine imkan sağlayan teknolojilerdir.

Yıllar içinde bir çok araştırmacı METU Biyomekanik Laboratuvarında bulunan

yürüyüş analizi sistemini kurmak ve geliştirmek için çaba göstermiştir. İlk yürüyüş

analizi sistemi olan KİSS sisteminin ardından, eylemsizlik ölçer tabanlı yeni yürüyüş

analiz sistemi çalışılmaya başlanmıştır.

Bu çalışmanın ilk bölümünde, kinematik ve kinetik yürüyüş analiz sistemleri,

eylemsizlik ölçer sensörleri ve kuvvet platformları kullanılarak toplanan veriler

viii

kullanılarak geliştirilmiştir. Yazılım açık kaynak kodlu bir yazılım olan OpenSim'e

dayanmaktadır.

Alt ve üst ekstremiteler için mevcut eylemsizlik ölçer sensörleri kullanılarak yazılım

uyarlandıktan sonra geliştirilen sistemler, tek ve çoklu sensörlerin statik deney

düzenekleri ile denenmesi ve tek denekle gerçekleştirilen insanlı deneyler

aracılığıyla incelenmiş ve kavramsal doğrulama gerçekleştirilmiştir. Yedi

eylemsizlik ölçer sensörü kullanılarak bir alt ekstremite test düzeneği yardımıyla

veriler toplanmış, işlenmiş ve yorumlanmıştır. Ayrıca, bir insan denekten yürüyüş

ve üst ekstremite hareket verileri toplanmıştır.

Kinematik yürüyüş analizinin sonuçları, hareket sırasında pelvis sensörünün (ana

sensör) istenmeyen hareketi nedeniyle kayma gözlemlendiğini göstermektedir.

Sonuçlardaki kayma sorunu eğim düzeltici kod kullanılarak çözülmüştür. Genel

olarak, analiz sonuçları kinematik veri desenlerinin literatürle tutarlı olduğunu

göstermiştir. Bazı sonuçlar ile literatürdeki değerler arasındaki farkların sensör

hassasiyeti ve deneğin kendine özgü yürüyüş biçiminden kaynaklandığı

düşünülmüştür.

Kinetik verilerin paternleri de literatürdeki verilerin paternleriyle benzer olsa da

temel olarak iki sorun gözlemlenmiştir. İlk sorun, bazı eğrilerin literatürdekinin

tersi olduğunun fark edilmiş olmasıdır. Bu durumun koordinat sistemi farkından

olduğu düşünülmektedir. İkinci olarak, deneysel sonuçların literatürdekilerden daha

yüksek değerler olduğu görülmüştür. Ancak farklı ağırlıklara sahip farklı

deneklerin verilerinin incelenmesi sonucunda, verilerin kendi içinde tutarlı olduğu

görülmüştür.

Anahtar Kelimeler: Yürüyüş Analizi, Hareket Analizi, Eylemsizlik Ölçer,

OpenSim, Kuvvet Platformu

ix

To my family

x

ACKNOWLEDGMENTS

Firstly, I wish to express my deepest gratitude to my supervisor Assoc. Prof. Dr.

Ergin Tönük for his support and guidance. His advices led me to learn many valuable

things throughout the research.

I would like to thank Prof. Dr. Melek Güneş Yavuzer for her suggestions and

comments. The IMU hardware was developed by Adasoft Danışmanlık ve Yazılım

Hizmetleri (METU-Technopolis) through a TÜBİTAK TEYDEB grant, assistance

of Mr. Aktan Orhan, Oğuz Şenbaklavacı, Yılmaz Özçalışkan is gratefully

acknowledged. Also, I wish to thank the staff of METU Mechanical Engineering

Machine Shop for their support in the manufacturing process carried out for the

thesis.

Finally, I would like to express my gratitude to my family for their encouragement

and understanding.

xi

TABLE OF CONTENTS

ABSTRACT .. V

ÖZ .. VII

ACKNOWLEDGMENTS .. X

TABLE OF CONTENTS .. XI

LIST OF TABLES .. XIII

LIST OF FIGURES ... XIV

CHAPTERS

1 INTRODUCTION ... 1

1.1 Motivation and Scope of the Research ... 2

2 LITERATURE REVIEW .. 5

2.1 Kinematic Analysis .. 8

2.1.1 Systems ... 8

2.1.2 Parameters ... 9

2.2 Kinetic Analysis ... 12

2.2.1 Systems ... 12

2.2.2 Parameters ... 12

3 SOFTWARE OF MOTION ANALYSIS SYSTEM 15

3.1 Coordinate Systems .. 16

3.2 Data from IMU Sensors and Force Plates .. 20

3.3 Preprocessing Data ... 21

3.4 Madgwick Algorithm ... 22

3.5 OpenSim Program .. 27

3.5.1 IMU Placer Tool ... 28

3.5.2 IMU Inverse Kinematics Tool .. 29

3.5.3 Inverse Dynamics Setup ... 31

3.5.4 Animation of the Motion .. 32

3.6 Interpretation of Code .. 32

xii

3.6.1 Code for Kinematic Analysis System .. 32

3.6.2 Code for Kinetic Analysis System .. 35

4 EXPERIMENTAL SETUP AND DATA ANALYSIS 37

4.1 Problems of IMU System ... 37

4.2 Single Sensor Motion Analysis... 40

4.3 Multiple Sensor Motion Analysis with Mechanical Test Equipment 46

4.3.1 Design of Mechanical System ... 48

4.3.2 Manufacturing of Mechanical System ... 49

4.3.3 Multi-Sensor Experiments Results for Lower Extremity 50

4.3.4 Multi-Sensor Experiments Results for Upper Extremity 55

4.4 Multiple Sensor Kinematic and Kinetic Analysis with Human Movement

Data..57

4.4.1 Kinematic and Kinetic Gait Analysis with Human Subject 58

4.4.2 Kinematic Analysis for Human Upper Extremity 71

5 CONCLUSION AND FUTURE WORK .. 75

5.1 Conclusion .. 75

5.2 Future Work .. 76

REFERENCES .. 79

APPENDICES

A. Technical Drawings of Mechanical System ... 85

B. Ethical Approval ... 94

C. Preprocessing Matlab Codes ... 95

D. Lower Extremity Kinematic Analysis Codes with Quaternions 100

E. Lower Extremity Kinematic Analysis Codes with Euler Angles 111

F. Upper Extremity Kinematic Analysis Codes .. 117

G. Kinetic Analysis Codes ... 127

H. Slope Correction Code .. 132

xiii

LIST OF TABLES

TABLES

Table 3.1 Kinematic coordinate frame transformation table 18

Table 3.2 Force Plate to OpenSim coordinate frame transformation table 19

Table 4.1 Sensitivity Values ... 38

xiv

LIST OF FIGURES

FIGURES

Figure 2.1. (a) Hip joint, (b)knee joint, (c) ankle joint movements [17] 6

Figure 2.2. Shoulder and elbow joints’ movements [18] .. 6

Figure 2.3. Normalized vertical GRF [19] .. 7

Figure 2.4. Gait cycle phases [20] ... 8

Figure 2.5. Joint angular kinematics of twenty-four healthy young adults [46] 10

Figure 2.6. Vertical Ground Reaction Force [27] .. 13

Figure 2.7. Joint angular kinetics of twenty-four healthy young adults [46] 14

Figure 3.1. Sensor (LSM9DS1) coordinate frames ... 16

Figure 3.2. Kinematic analysis related coordinate frames (reproduced from [33]) 18

Figure 3.3. Force plate reference frames ... 19

Figure 3.4. IMU and Force Plate Dumper Interface .. 20

Figure 3.5. Tera Term Interface .. 21

Figure 3.6. IMU recorded data file .. 22

Figure 3.7. Complete block diagram of Madgwick Algorithm [31] 26

Figure 3.8. OpenSim Main Window ... 27

Figure 3.9. OpenSim IMU Placer Tool ... 28

Figure 3.10. Matlab code for OpenSim IMU Placer ... 29

Figure 3.11. OpenSim IK Tool .. 29

Figure 3.12. Lower extremity input data for OpenSim IK Tool 30

Figure 3.13. Upper extremity input data for OpenSim IK Tool 30

Figure 3.14. Matlab code for OpenSim IK Tool ... 31

Figure 3.15. OpenSim ID Tool .. 31

Figure 3.16. Visualizing Ground Reaction Forces .. 32

Figure 3.17. Block diagram of the kinematic analysis system 34

Figure 3.18. Block diagram of the kinetic analysis system 35

Figure 4.1. Sensor configuration such that gravitational effect on the z-axis 39

Figure 4.2. Sensor configuration such that gravitational effect on the x-axis 39

xv

Figure 4.3. Sensor configuration such that gravitational effect on the y-axis 39

Figure 4.4. Experimental setup for single sensor motion analysis 40

Figure 4.5. The first output of the right leg sensor ... 41

Figure 4.6. Angle correction of the right leg sensor ... 42

Figure 4.7. Offset correction of the right leg sensor ... 42

Figure 4.8. The first output of the left leg sensor .. 43

Figure 4.9. Angle correction of the left leg sensor.. 43

Figure 4.10. Offset correction of the left leg sensor ... 44

Figure 4.11. Foot sensor rotated around +x axes at +60 degrees 44

Figure 4.12. Foot sensor rotated around +y axes at +45 degrees 45

Figure 4.13. Foot sensor rotated around +z axes at -30 degrees 45

Figure 4.14. Neutral pose of the Rajagopal model ... 47

Figure 4.15. Mechanical test equipment ... 48

Figure 4.16. Manufactured test equipment ... 49

Figure 4.17. Sensor Positions .. 50

Figure 4.18. Knee flexion-extension experiment .. 51

Figure 4.19. Hip adduction-abduction experiment ... 52

Figure 4.20. OpenSim IMU Placer Tool adjustment .. 53

Figure 4.21. OpenSim IMU IK adjustment .. 53

Figure 4.22. Right knee flexion-extension experiment results 54

Figure 4.23. Right hip adduction-abduction experiment results 54

Figure 4.24. Right shoulder adduction-abduction experiment results 56

Figure 4.25. Left shoulder adduction-abduction experiment results 56

Figure 4.26. Left elbow flexion experiment results .. 57

Figure 4.27. Experimental Setup .. 58

Figure 4.28. Right hip and left hip flexion results .. 59

Figure 4.29. Hip flexion comparison for one gait cycle (reproduced from [47]) ... 60

Figure 4.30. Pelvis sensor Euler angles result in NWU order 61

Figure 4.31. Right hip, left hip and pelvis rotation first results 61

Figure 4.32. Rotation results after slope correction .. 62

xvi

Figure 4.33. Hip rotation comparison for one gait cycle (reproduced from [47]) ... 62

Figure 4.34. Hip rotation for one gait cycle according to Fukuchi et al. [46] 63

Figure 4.35. Right hip adduction, left hip adduction, pelvis tilt and pelvis list first

results ... 63

Figure 4.36. Right hip adduction, left hip adduction, pelvis tilt and pelvis list results

after slope correction ... 64

Figure 4.37. Pelvis tilt comparison for one gait cycle (reproduced from [47]) 64

Figure 4.38. Pelvis tilt for one gait cycle according to Fukuchi et al. [46] 65

Figure 4.39. Pelvis list comparison for one gait cycle (reproduced from [47]) 65

Figure 4.40. Right knee and left knee flexion results .. 66

Figure 4.41. Knee flexion comparison for one gait cycle (reproduced from [47]) . 66

Figure 4.42. GRF in the first kinetic analysis experiment (red line: force plate 1 x

axis, dark blue line: force plate 1 y axis, green line: force plate 1 z axis, pink line:

force plate 2 x axis, blue line: force plate 2 y axis, grey line: force plate 2 z axis) 67

Figure 4.43. GRF in the second kinetic analysis experiment (red line: force plate 1

x axis, dark blue line: force plate 1 y axis, green line: force plate 1 z axis, pink line:

force plate 2 x axis, blue line: force plate 2 y axis, grey line: force plate 2 z axis) 68

Figure 4.44. GRF example in the previous kinetic analysis experiments (red line:

force plate 1 x axis, dark blue line: force plate 1 y axis, green line: force plate 1 z

axis, pink line: force plate 2 x axis, blue line: force plate 2 y axis, grey line: force

plate 2 z axis) ... 68

Figure 4.45. Right leg kinetic analysis results ... 69

Figure 4.46. Left leg kinetic analysis results when subject walking to Direction 1 70

Figure 4.47. Right leg kinetic analysis results when subject is walking in Direction

2 ... 70

Figure 4.48. Shoulder flexion kinetic analysis results ... 72

Figure 4.49. Elbow flexion kinetic analysis results ... 72

Figure 4.50. Elbow pronation-supination kinetic analysis results 73

1

CHAPTER 1

1 INTRODUCTION

Human voluntary movement is one of the most examined multidisciplinary science

subjects. Since muscles, bones, joints, nerves, spinal cord and brain are involved in

this process, it is the topic of three main scientific disciplines; anatomy, physiology,

and biomechanics [1]. Anatomy examines these structures and the relationships

between them, physiology studies the functions of these structures, and

biomechanics investigates these biological structures and their functions using

classical mechanics perspective.

Locomotion is a branch of voluntary movement. It is one of the essential functions

of the body, and it is significant for all humans to perform daily activities. It is an

ability or task that a person moves herself/himself from one place to another

independently [2]. It includes lower limb movements like walking, running, and

jumping. According to Cech and Martin [2], the primary requirements of locomotion

are adequate dynamic balance to keep human posture stable, control and strength to

continue locomotion and overcome the forces (e.g. gravity force).

According to Andriacchi and Alexander [3], the intention of human locomotion

studies changed over time. These studies are motivated by survival questions in the

Paleolithic Era, wishing to understand harmony in the universe for Greek

philosophers, define diseases and find treatments for our century [3]. Additionally,

this analysis is not only used in clinical studies but also used in sports, robotics

research and training [4]. These intentions lead scientists to develop analysis

methods and devices and define parameters to study human locomotion, specifically

human gait.

2

Gait analysis, a subbranch of biomechanics, examines human gait with the help of

the science of classical mechanics. It consists of successive steps. The first step is

that kinematic and kinetic data are obtained from a human during locomotion. In the

following stages, measured data is applied to the biomechanical model, and

computed parameters like joint angles, joint forces, and moments are used for

clinical, robotic or sports research.

During early times, gait analysis methods were semi-subjective and depended on the

observation of clinicians. With the help of modern technology, more objective and

quantitative devices and methods are available. Modern devices used in gait analysis

can be classified into three groups: non-wearable sensor systems (NWS), wearable

sensor systems (WS) and hybrid systems [5]. According to Muro-de-la-Herran et al.

[5], NWS is located on the subject's arranged walkway, WS is located on the patient's

body, and the hybrid systems use both NWS and WS. NWS systems are floor sensors

and image processing-based sensors [5]. WS systems consist of diverse groups of

sensors that include Inertial Measurement Units (IMUs), force sensors, goniometers,

etc. The main difference between NWS and WS is that WS can be used outside the

laboratory to track patients' daily-life routines. These sensory systems are examined

in detail in Chapter 2.

Normal human gait is characterized by gait parameters such as step length, joint

angles, ground reaction forces, gait phases etc. Depending on the field of study,

various parameters are selected to analyze gait. These parameters and the selection

of the parameters are investigated in Chapter 2.

1.1 Motivation and Scope of the Research

Starting from Güler [6], many scientists have worked to improve the gait analysis

system (KISS) at METU biomechanics laboratory, which is the first gait analysis

system in Turkey that is constructed using of the shelf components. Güler

constructed a biomechanical model, and he built marker and force plate setups for

3

kinematic and kinetic gait analysis, respectively [6]. In later studies, laboratory setup

was advanced, used and compared with commercial systems by Shafiq [7], Karpat

[8], Afşar [9], Söylemez [10], Civek [11], Kafalı [12], Erer [13] and Biçer [14]. Biçer

also established a new kinematic gait analysis system which is the IMU-based system

replacing the opto-electronic kinematic motion capture system [14]. This system

consists of five IMU sensors and worked with Matlab, C++ and OpenSim programs.

Additionally, OpenSim has been used not only for the kinematics but also for the

kinetics part of the gait analysis. Despite the proof of the concept of the system, there

are several issues that need to be improved in the gait analysis system. This thesis

intends to investigate the following parts:

In the first part of the study, OpenSim environment capabilities and software

improvements are investigated. With the rapid development of IMUs, they are used

more often in clinical studies. Gait analysis software, like OpenSim, have been

updated to include IMU data input. OpenSim 3.3 was used for Biçer's thesis [14].

This version does not include the IMU plugin, but OpenSim 4.3 has it. It yields faster

and easier to calculate results for gait analysis. Additionally, the accuracy and

precision of kinetic data are directly related to kinematic data. So kinetic analysis is

more reliable with the improvements in software. Moreover, OpenSim 4.3 allows

animating the movement as a result of a more accurate analysis with IMUs. It is

thought that animation will help researchers and clinicians to observe movements

from different perspectives and identify diseases more precisely.

The second part of the study examines system enhancements. IMU system in METU

biomechanics laboratory consists of five IMU sensors; two placed at the proximal

part of legs, two at the distal part of legs, and one at the pelvis. This setup was not

receiving information from feet. Most of the clinical studies for lower extremities

and gait analyses that worked with IMUs include seven IMUs placed at previously

explained locations in addition to two feet, and analysis is more reliable when a

system gets information from feet.

4

Thirdly, the kinetic analysis system with force plates was improved. Ground reaction

force data were calibrated, coordinate system transformation was performed and sent

as an input to OpenSim Inverse Dynamics Tool with movement data from OpenSim

IMU Inverse Kinematics Setup.

Additional to the lower extremity kinematic analysis system, the kinematic analysis

system was developed for the human upper extremity. This system consists of seven

IMU sensors placed at a subject's hands, proximal part of right and left arms, distal

part of right and left arms and spine.

In the last part of the thesis, experiments were conducted to test lower extremity and

upper extremity kinematic analysis systems. Also, kinetic analysis of the lower

extremity system was tested via experiments. The system was validated qualitatively

as a result of experiments.

5

CHAPTER 2

2 LITERATURE REVIEW

Human movement analysis is a method that is frequently used in areas such as

athletic performance, man-machine interfaces and games [15]. Especially it is widely

used in the field of medical diagnostics, where a diagnosis can be made by comparing

the kinematic and kinetic parameters of the patient with the data of a healthy

individual.

In this thesis, human motion analysis system is studied under two categories. These

categories are kinematic and kinetic analyses. In order to understand kinematic and

kinetic analyses, it is important and necessary to examine the movements that human

limbs can perform and the forces and moments that cause or arise due to these

movements.

The movements that can be performed by the lower limb are presented in Figure 2.1

[17]. The human pelvis can carry out tilt motion in the sagittal plane, oblique motion

in the frontal plane and rotation in the transverse plane. The hip joint can perform

abduction-adduction, flexion-extension and internal-external rotation. The knee joint

can perform flexion-extension, varus-valgus and internal-external rotation

movements. As for the ankle joint, it can perform plantarflexion-dorsiflexion, varus-

valgus and internal-external rotation movements.

6

Figure 2.1. (a) Hip joint, (b)knee joint, (c) ankle joint movements [17]

Upper limb movements are presented in Figure 2.2 [18]. Flexion-extension in the

sagittal plane, abduction-adduction in the frontal plane, medial-lateral rotation and

horizontal flexion-extension in the transverse plane can be performed by the shoulder

joint of a human. The elbow joint can carry out flexion-extension movements in the

sagittal plane and pronation-supination movements in the transverse plane.

Additionally, flexion-extension and abduction-adduction can be performed by the

wrist joint of a human.

Figure 2.2. Shoulder and elbow joints’ movements [18]

7

Upper and lower extremity movements are important for kinematic analysis. In

kinematic analysis, analysis of motion is performed by examining measurements

such as angle, angular velocity and acceleration of the related joints. In this thesis,

kinematic analysis is computed for the upper and lower extremities separately.

Although kinematic analysis of the lower extremity in the literature generally focuses

on gait analysis, analysis of many different motions can be performed, especially

with the development of out-of-laboratory systems [16].

Kinetic analysis is the concept of analyzing the joints that perform motion in terms

of force and moment. Ground reaction force (GRF) is a significant parameter for

kinetic analysis, especially in terms of kinetic gait analysis. It can be used to calculate

the moments of related joints. Also, GRF is used to interpret the state of irregularity

of pathological gait and phases of normal gait [49]. The vertical ground reaction

force graph in relation to gait phases for one gait cycle is presented in Figure 2.3

[19].

Figure 2.3. Normalized vertical GRF [19]

A typical gait cycle and gait phases are shared in Figure 2.4 [20]. In the stance

phase, the foot is in contact with the ground. In the swing phase, the foot examined

8

during the gait cycle has no contact with the ground. Normal human locomotion is

performed by repeating the gait cycle for two legs in sequence.

Figure 2.4. Gait cycle phases [20]

2.1 Kinematic Analysis

2.1.1 Systems

There are different systems that can be used to perform kinematic analysis. Among

these systems, opto-electronic systems are classified as the gold-standard. It is

known that the most widely used brand is VICON [21]. In these systems, active or

passive makers are connected to anatomical landmarks on the subject's body, and the

movement of the subject is monitored in this way. The drawbacks of opto-electronic

systems are that adequate lighting is very crucial, it is not possible to work outside

the laboratory, and a high sampling rate is required for fast movements [20].

The second method is Motion Capture Cameras. In these systems, movements are

derived from sequences of photographs. The disadvantages of these systems are the

same as the opto-electronic systems [20].

9

The third method is magnetic systems. Such systems do not depend on light, but

operation is uncomfortable for the subject and it can be easily interfered by magnetic

materials [20].

Alternatively, electro-goniometers can be used for gait analysis. The advantage of

this system is that the output can be used directly for computation, but the use is

uncomfortable for the subject, and the measurement quality for the lower limb is

poor [20].

The last method is inertial systems. For these systems, Inertial Measurement Units

are used. The sensors include a gyroscope, an accelerometer and a magnetometer.

IMU sensors are cheap, lightweight and can be used out of a laboratory. The fact that

these systems can be used out-of-laboratory is an advantage not only for gait analysis

but also for tracking many daily life activities (e.g. rowing, stair climbing, cycling,

etc.) [22]. The downsides of these systems are the limited battery life, computational

complexity, and the possibility that the connected sensors may disturb the user [20].

In addition, it has been reported that drift problems are observed in this sensor type

[21]. It has been stated that the drift problem can be observed especially in the

horizontal axes of the gyroscope sensor [22].

2.1.2 Parameters

The main aim of kinematic analysis is to obtain kinematic parameters. The obtained

parameters are then used to compare subjects (e.g., healthy subjects and patients).

The most widely used parameters for gait analysis are spatiotemporal parameters

(e.g., step length, step time, stance phase, swing phase, stride length, stride time,

cadence, velocity, step duration) and joint angular kinematics [23], [24].

In this thesis, a system that computes joint angular kinematics has been studied, and

the data in the literature has been examined in this context. Figure 2.5, from Fukuchi

et al. [46], presents joint angular kinematics of twenty-four young adults (age 27.6 ±

4.4 years) during walking. In these graphs, each curve represents a walking speed.

10

Light blue represents slow speed (30% less than preferred speed), and dark blue

indicates fast speed (30% more than preferred speed). The dashed line is the users'

preferred walking speed.

Figure 2.5. Joint angular kinematics of twenty-four healthy young adults [46]

11

In order to obtain kinematic parameters such as joint angles, it is necessary to find

the orientation of the segments connected by the joints. There are various methods

to determine the attitude of these rigid bodies, and the most widely used approach is

Euler angles.

Euler Angles is a method used to find the rotation of a rigid body in three axes. Angle

and the axis of rotation are defined in this method, and sequence is significant. The

main disadvantages of this method are that Euler angles suffer from singularities,

they depend on the order of rotation and when attitude over time is analyzed, they

are less accurate than quaternions [14], [29]. Therefore, quaternions have been

studied. Quaternions do not have singularity problems and are a successful method

to represent angular velocity. The downside of the quaternions is that the four

quaternion parameters have no physical meaning. Therefore, it is difficult to interpret

quaternions. Also, it must be in unity norm to represent a rotation [29].

Usually, the analysis does not examine a single instantaneous rigid body attitude but

rather monitors the changes of incremental variables over time. This is called real-

time attitude estimation of the rigid body. Generally, these systems use data from the

previous time point to estimate the pose of the rigid body at the next time point.

The most popular method used in the biomechanics field is the Kalman Filter. There

are several different types of Kalman Filter, such as indirect Kalman filter (IKF),

extended Kalman filter (EKF), unscented Kalman filter (UKF) [28]. IKF scheme

uses the error state for this estimation; EKF linearizes the non-linear system with a

truncated Taylor series expansion approach [28]. The UKF uses prior information

for this computation [28]. Due to the complexity of these methods, new methods like

Madgwick Algorithm [31] and Mahony algorithm [30] have been proposed. The

Madgwick Algorithm, that is used in this thesis, is presented in detail in Section 3.4.

12

2.2 Kinetic Analysis

2.2.1 Systems

Sensors that measure force or pressure are used to perform kinetic analysis. The most

widely used type of such systems are force platforms. To analyze gait, force

platforms are placed on the subject's walkway, and the ground reaction force of the

subject is calculated by measuring force and moment in three axes. Force platforms

usually have load cells placed at each corner of two metal plates to measure the forces

and moments in each axis [20]. The moments of the subject's joints are then

calculated and compared to the joint moments of a healthy individual. The main

drawback of such systems is that they require an expensive setup, and it is not

possible to use them out of the laboratory [20].

Scientists have developed force shoes as a possible solution to the inability to use

force platforms outside the laboratory. In this kind of system, force sensors are

attached to the sole of the subject's shoes so that the user's gait can be monitored

[20]. The main challenge of force shoes is that the unevenness of the surface leads

to a decrease in measurement efficiency [20]. Moreover, the kinematic data of the

subject is needed for accurate data processing [20].

Another option is to use pressure mats for kinetic analysis. Pressure mats have

sensors positioned in a pad. They are inexpensive and portable. Nevertheless, a

proper laboratory setup is required. Additionally, the scan rate decreases as the

resolution increases [20].

2.2.2 Parameters

The purpose of kinetic gait analysis is to obtain inter-personally comparable kinetic

parameters. Examples of these kinetic parameters are vertical GRF, peak propulsion,

peak braking, joint moments and joint powers [25], [26].

13

Figure 2.6 is presented to illustrate the use of vertical GRF to obtain joint moments

[27]. For this case, the force vector is in front of the hip and ankle joints and behind

the knee joint. In order to maintain balance, internal moments are required to

compensate the external moments, and the internal moments are provided by the

muscular system of the subject [27].

Figure 2.6. Vertical Ground Reaction Force [27]

This thesis studies a kinetic gait analysis system that computes GRF and joint

moments of the lower extremity. For this reason, data in the literature were

investigated from this perspective. Figure 2.7, from Fukuchi et al., [46] is presented

as an example of this data. Fukuchi et al. reported joint moments of twenty-four

young adults walking at various speeds. A dashed line represents the speed at which

the participants walked comfortably. The slow speed (-30% of comfortable velocity)

is represented by a light blue line, and the high speed (+30% of comfortable velocity)

is represented by a dark blue line.

14

Figure 2.7. Joint angular kinetics of twenty-four healthy young adults [46]

15

CHAPTER 3

3 SOFTWARE OF MOTION ANALYSIS SYSTEM

This thesis aims to build a motion analysis system for human upper and lower

extremities.

The primary purpose of the lower extremity motion analysis system is kinematic and

kinetic gait analysis, whereas for the upper extremity system, it is just kinematic.

The kinetic gait analysis system consists of force plates. By using these sensors,

ground reaction forces (GRFs) are measured, coordinate systems of these force plates

are transformed to OpenSim coordinate system and analysis is conducted by using

OpenSim Inverse Dynamics Setup. As a result, the moments of each joint can be

computed using kinematics and GRFs.

The kinematic gait analysis system consists of seven IMU sensors placed in seven

segments (pelvis, left and right thighs, shanks and feet) of the lower extremity of a

human. By using these sensors, angular velocity, linear acceleration, and magnetic

north can be measured. After data is collected, it should be filtered. By using

Madgwick Algorithm [31], these filtered sensor data are fused to find the orientation

of each sensor. Subsequently, coordinate systems of these sensors should be

transformed to OpenSim frame (see Sections 3.1 and 3.5), and combined data from

all the sensors are used by OpenSim to estimate angles of human lower limb joints

during walking.

On the other hand, the upper extremity motion analysis system includes only

kinematic analysis. It utilizes the same procedure as the kinematic gait analysis

system. The main difference is that IMU sensors should be attached to segments of

the upper extremity of a human (torso, hands and proximal and distal parts of left

and right arms). The output of this system is human upper extremity joint angles.

16

3.1 Coordinate Systems

Commercial LSM9DS1 sensor was used for the kinematic analysis system. The

sensors are approximately 60 g and have a size of 7 x 4.5 x 2.5 cm. Accelerometer,

gyroscope and magnetometer reference frames are presented in Figure 3.1.

Magnetometer and accelerometer reference frames are different, but gyroscope and

accelerometer reference frames are the same. Additionally, gyroscope and

accelerometer reference frames are left-handed reference frames, but the

magnetometer frame is a right-handed coordinate frame.

Figure 3.1. Sensor (LSM9DS1) coordinate frames

On the other hand, OpenSim environment, which is used for kinematic analysis for

this thesis, uses a coordinate system of X forward (red), Y up (green) and Z right

(blue) [33]. This is the standard reference frame system for the OpenSim

environment, as shown in Figure 3.2 [33]. Accelerometer frames of the used sensors

are added to this figure. The North-East-Down (NED) reference frame is presented

in this figure since Madgwick Algorithm uses NED as the earth reference frame.

17

Moreover, North-West-Up (NWU) reference frame is presented in Figure 3.2. It was

found after single sensor experiments (in Chapter 4.2) that Madgwick Algorithm

output is in NWU.

Two coordinate frames transformations should be carried out for the kinematic

analysis system. To give an example, coordinate frame transformations of the pelvis

IMU sensor are presented in Table 3.1.

The first transformation is the transformation of all IMU coordinate frames as NED

to use data in the Madgwick Algorithm input. In Table 3.1, the information from the

x-axis of the pelvis positioned magnetometer is written as the y-axis. This

transformation is needed to give data as Madgwick Algorithm input.

The second transformation is needed to use Madgwick Algorithm output in the

OpenSim. In Table 3.1, y axis of the Madgwick Algorithm input is -y axis of the

Madgwick Algorithm output. The second transformation is between the Madgwick

Algorithm output and OpenSim frame. The OpenSim interface should be used for

the second transformation, and it is defined as rotation about the x-axis as -pi/2.

18

Figure 3.2. Kinematic analysis related coordinate frames (reproduced from [33])

Table 3.1 Kinematic coordinate frame transformation table

NED Earth
Frame for
Madgwick
Algorithm

input

Pelvis

Gyroscope/Accelerometer
Axes

Pelvis

Magnetometer
Axes

NWU
Earth

Frame as
Madgwick
Algorithm

output

OpenSim
Frame

x -z -z x x

y -x x -y -z

z -y -y -z -y

19

In addition to the transformations of kinematic analysis system, force plate

coordinate systems should be transformed to OpenSim World Frame. Force plate

frames are presented in Figure 3.3. According to the walking direction, coordinate

system transformations change. Frame transformation table related to direction is

presented in Table 3.2.

Table 3.2 Force Plate to OpenSim coordinate frame transformation table

Direction 1 Direction 2

OpenSim
Frame

Force Plate1
Frame

Force Plate2
Frame

OpenSim
Frame

Force Plate1
Frame

Force Plate2
Frame

X -Y Y X Y -Y

Y Z Z Y Z Z

Z X -X Z -X X

Figure 3.3. Force plate reference frames

20

3.2 Data from IMU Sensors and Force Plates

The gait analysis system for lower extremity consists of two parts: kinematic and

kinetic gait analysis. The kinematic analysis output directly affects the kinetic

analysis results, and it is important for the OpenSim input that both data types

coincide with the same phases of the walk for kinetic gait analysis. Therefore, it is

essential to receive synchronized data from the relevant sensors. The program

developed by AdaSoft was used to receive synchronized data simultaneously. The

program interface is presented in Figure 3.4.

Figure 3.4. IMU and Force Plate Dumper Interface

After connecting the force plate and IMU receivers, the interface lets IMU sensors

synchronize. Subsequently, data acquisition can be started by clicking the save

button. It is necessary to press the button again to stop recording.

On the other hand, this interface cannot be used for the upper extremity motion

analysis system since it does not include only IMU sensors. Therefore, the Tera Term

interface can be used to collect data from IMU sensors. The program interface and

21

settings are presented in Figure 3.5. By pressing button 9 on keyboard, IMU sensors

can be synchronized; after then, button 1 can be used to start recording, and 0 is used

to stop recording.

Figure 3.5. Tera Term Interface

3.3 Preprocessing Data

Recorded data from IMU sensors is presented in Figure 3.6. The first row includes

the timestamp, sensor number, gyroscope data with related axis (abbreviated as GX,

GY, GZ), accelerometer data with related axis (abbreviated as AX, AY, AZ),

magnetometer data with related axis (abbreviated as MX, MY, MZ). As seen in

Figure 3.6, the sensor data is recorded in a mixed manner. Therefore, the first step is

grouping the data using sensor index with the help of a Matlab code. The data count

is then equalized so that each sensor's first and last data indices are the same. Finally,

the first five thousand data are written as the average of the first one hundred data of

gyroscope, accelerometer and magnetometer measurements to find the orientation of

22

the sensors with respect to the world reference frame. .txt format is used for the files.

After the final preprocessing, the data is ready to be used in the Madgwick

Algorithm.

The codes written for the pre-processing of the data were originally developed within

the scope of this thesis and are presented in Appendix C.

Figure 3.6. IMU recorded data file

3.4 Madgwick Algorithm

According to Madgwick [31], IMU data have a high level of noise; therefore, data

from three different types of sensors (accelerometer, magnetometer, gyroscope)

should not be used separately [31]. To determine the orientation of the body in the

World frame accurately, the data from all sensors should be combined. The

combination can be achieved by a fusion algorithm. Several different fusion

algorithms can be applied to IMU sensor data, and Madgwick Algorithm is one of

them. Sebastian O.H. Madgwick proposed this algorithm in 2010, and he proposed

23

this method to be worked with the IMU sensors [31]. Normally, Kalman Filter is the

most popular method used in biomechanics, but due to the complexity of this

method, the Madgwick Algorithm is used. Also, Madgwick Algorithm has better

accuracy levels when compared to the Kalman-based algorithm [31].

To understand Madgwick Algortihm, coordinate frames, notation and algorithm

steps are explained in this section, respectively.

Firstly, the most common coordinate frames used in this type of algorithm are sensor

frame and earth frame. Sensor frame is the frame that moves with the sensor.

Typically sensor is attached to the related body, so it is also known as the body frame.

The other frame is the earth frame, which is fixed on Earth and does not move.

The second significant part of understanding the algorithm is related to notation. Pre-

subscript defines the source coordinate frame, and pre-superscript defines the

destination coordinate frame [32]. As an example 𝑞𝑆
𝐸 describes the orientation of

sensor frame (S) relative to earth frame (E). Also, it is the orientation of the body or

sensor in the form of a quaternion [32]. In the case of only pre-superscript being

defined, the parameter was measured and represented in the same frame [32].

Madgwick Algorithm has two crucial steps. The first one depends on gyroscope

measurements, and the second one is related to accelerometer and magnetometer

measurements.

The major equations of the Madgwick Filter related to gyroscope measurements are

presented as [32].

 𝑤
𝑠 = [0 𝑤𝑥 𝑤𝑦 𝑤𝑧] (3.1)

 �̇�𝑤,𝑡𝐸
𝑆 =

1

2
�̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆 ⨂ 𝑤𝑡

𝑠 (3.2)

 𝑞𝑤,𝑡𝐸
𝑆 = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 + �̇�𝑤,𝑡𝐸
𝑆 ∆𝑡 (3.3)

 𝜇𝑡 = 𝛼‖ �̇�𝑤,𝑡𝐸
𝑆 ‖∆𝑡 𝛼 > 1 (3.4)

24

The general vector for angular velocity measurements can be seen in Equation (3.2).

In this equation, angular velocity vector (includes gyroscope measurements on

sensor frame at time t) is denoted as 𝑤𝑡
𝑠 . �̇�𝑤,𝑡𝐸

𝑆 , the quaternion derivative, describes

the rate of orientation change at time t. �̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆 is the estimated orientation at the

previous time point, ∆t is the sampling period, 𝜇𝑡 is the step size at time t and α is

the augmentation of 𝜇 because of the noise of magnetometer and accelerometer

sensors. 𝑞𝑤,𝑡𝐸
𝑆 defines the orientation of the earth frame relative to the sensor frame

at time t by using previous orientation estimation and gyroscope measurements.

The second part includes equations related to accelerometer and magnetometer

measurements. These measurements are substituted into Gradient Descent

Algorithm. The final accelerometer (from Equation(3.5) to Equation (3.7)) and

magnetometer equations (from Equation(3.8) to Equation (3.11)) were solved

separately and combined with each other by using Equations (3.12) and (3.13).

 �̂�
𝑆 = [0 𝑎𝑥 𝑎𝑦 𝑎𝑧] (3.5)

 𝑓𝑔(�̂� ,𝐸
𝑆 �̂�

𝑆) = [

2(𝑞2𝑞4 − 𝑞1𝑞3) − 𝑎𝑥
2(𝑞1𝑞2 − 𝑞3𝑞4) − 𝑎𝑦

2 (
1

2
− 𝑞2

2 − 𝑞3
2) − 𝑎𝑧

] (3.6)

 𝐽𝑔(�̂� 𝐸
𝑆) = [

−2𝑞3 2𝑞4 −2𝑞1
2𝑞2 2𝑞1 2𝑞4
0 −4𝑞2 −4𝑞3

2𝑞2
2𝑞3
0
] (3.7)

 �̂�
𝐸 = [0 𝑏𝑥 0 𝑏𝑧] (3.8)

 �̂�
𝑆 = [0 𝑚𝑥

𝑚𝑦 𝑚𝑧] (3.9)

𝑓𝑏(�̂� ,𝐸
𝑆 �̂�

𝐸 , �̂�
𝑆) = [

2𝑏𝑥(0.5 − 𝑞3
2 − 𝑞4

2) + 2𝑏𝑧(𝑞2𝑞4 − 𝑞1𝑞3) − 𝑚𝑥

2𝑏𝑥(𝑞2𝑞3 − 𝑞1𝑞4) + 2𝑏𝑧(𝑞1𝑞2 − 𝑞3𝑞4) − 𝑚𝑦

2𝑏𝑥(𝑞1𝑞3 − 𝑞2𝑞4) + 2𝑏𝑧(0.5 − 𝑞2
2 − 𝑞3

2) − 𝑚𝑧

] (3.10)

25

 𝐽𝑏(�̂� , �̂�
𝐸

𝐸
𝑆) =

[

−2𝑏𝑧𝑞3 2𝑏𝑧𝑞4 −4𝑏𝑥𝑞3 − 2𝑏𝑧𝑞1
−2𝑏𝑥𝑞4 + 2𝑏𝑧𝑞2 2𝑏𝑥𝑞3 + 2𝑏𝑧𝑞1 2𝑏𝑥𝑞2 + 2𝑏𝑧𝑞4

2𝑏𝑥𝑞3 2𝑏𝑥𝑞4 − 4𝑏𝑧𝑞2 2𝑏𝑥𝑞1 − 4𝑏𝑧𝑞3

−4𝑏𝑥𝑞4 + 2𝑏𝑧𝑞2
−2𝑏𝑥𝑞1 + 2𝑏𝑧𝑞3

2𝑏𝑥𝑞2

] (3.11)

 𝑓𝑔,𝑏(�̂� ,𝐸
𝑆 �̂� , �̂�

𝐸 , �̂�
𝑆

𝑆) = [

𝑓𝑔(�̂� ,𝐸
𝑆 �̂�

𝑆)

𝑓𝑏(�̂� ,𝐸
𝑆 �̂�

𝐸 , �̂�
𝑆)

] (3.12)

 𝐽𝑔,𝑏(�̂� , �̂�
𝐸

𝐸
𝑆) = [

𝐽𝑔
𝑇(�̂� 𝐸

𝑆)

𝐽𝑏
𝑇(�̂� , �̂�

𝐸
𝐸
𝑆)

] (3.13)

Angular velocity (𝑤𝑡
𝑆) from the gyroscope, linear acceleration (�̂�𝑡

𝑆) from the

accelerometer, magnetic direction and strength (�̂�𝑡
𝑆) from magnetometer at time t

and Earth's magnetic field in earth frame (�̂�
𝐸) are defined in these equations.

Superscript s indicates that these vectors are described in the sensor frame. Vector

representation of the sensor data can be seen in Equations (3.1), (3.5) and (3.9).

𝑞∇,𝑡𝐸
𝑆 defines the orientation of the earth frame relative to the sensor frame at time t

by using previous orientation estimation and magnetometer and accelerometer

measurements. ∇ means that the related quaternion is calculated by using the gradient

descent algorithm.

 𝑞∇,𝑡𝐸
𝑆 = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 + 𝜇𝑡
∇𝑓

‖∇𝑓‖
 (3.14)

 ∇𝑓 = {
𝐽𝑔
𝑇(�̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆)𝑓𝑔(�̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆 , �̂� 𝑡

𝑆)

 𝐽𝑔,𝑏
𝑇 (�̂�𝑒𝑠𝑡,𝑡−1, �̂�

𝐸
𝐸
𝑆)𝑓𝑔,𝑏(�̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 , �̂� , �̂�
𝐸 , �̂�

𝑆

𝑆)

 (3.15)

As mentioned earlier, Eqs. (3.3) and (3.14) are the main equations to estimate

orientation at time t. Equation (3.3) depends on the angular rate and Eq. (3.14)

depends on accelerometer and magnetometer measurements. After fusing these

equations, Madgwick calculated "filter fusion algorithm equations" that are

presented Eqs. (3.16), (3.17) and (3.18). β is the magnitude of gyroscope

measurement error. It can be calculated by multiplying mean zero gyroscope

measurement error by √3/4.

26

 𝑞𝑒𝑠𝑡,𝑡𝐸
𝑆 = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 + �̇�𝑒𝑠𝑡,𝑡𝐸
𝑆 ∆𝑡 (3.16)

 �̇�𝑒𝑠𝑡,𝑡𝐸
𝑆 = �̇�𝑤,𝑡𝐸

𝑆 − 𝛽 �̇̂�𝜖,𝑡𝐸
𝑆 (3.17)

 �̇̂�𝜖,𝑡 =𝐸
𝑆 ∇𝑓

‖∇𝑓‖
 (3.18)

The block diagram of Madgwick Algorithm is presented in Figure 3.7. The equations

presented do not include magnetic distortion (Group 1) and gyroscope drift

compensation (Group 2) in Figure 3.7. These corrections can be used to get more

accurate estimations about IMUs' orientation.

Figure 3.7. Complete block diagram of Madgwick Algorithm [31]

Group 1, in Figure 3.7 represents the magnetic distortion compensation of the

magnetometer. Moreover, the need for the reference direction of the Earth can be

eliminated by using Group 1 in the algorithm. This compensation can be achieved

with the calculation of the reference direction of Earth's magnetic field (�̂�𝑡
𝐸) by

using the measured direction of Earth's magnetic field with the help of magnetometer

(ℎ̂𝑡
𝐸). Eqs. (3.19) and (3.20) can be used for this compensation [31].

27

 ℎ̂𝑡
𝐸 = [0 ℎ𝑥 ℎ𝑦 ℎ𝑧] = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 ⨂ �̂�𝑡
𝑠 ⨂ �̂�𝑒𝑠𝑡,𝑡−1

∗
𝐸
𝑆 (3.19)

 �̂�𝑡
𝐸 = [0 √ℎ𝑥2 + ℎ𝑦2 0 ℎ𝑧] (3.20)

3.5 OpenSim Program

OpenSim is an open source software package that can be used to analyze and

simulate movement with the help of models of musculoskeletal structures. It has

different modules for kinematic and kinetic analyses. OpenSim 4.3 version was used

for this study. After OpenSim 4.1 version OpenSense software was released which

was able to use IMU data for kinematic analysis.

The main reasons for using OpenSim are that it provides a fast tool for kinetic and

kinematic analysis with the help of manipulable models and IMU plugins and allows

animating the motion.

The main window of OpenSim is presented in Fig. 3.8. By using the main window,

models and motions can be visualized, and by using OpenSim Tools, analysis can be

performed.

Figure 3.8. OpenSim Main Window

28

Analysis can be performed after opening a model. There are different

musculoskeletal models developed for OpenSim. All released models are shared on

OpenSim official website [48]. With the help of the Matlab Scripting Environment,

conducting the analysis with Matlab is possible. In the further sections, OpenSim

Tools, which are IMU Placer Tool, IMU Inverse Kinematics Tool and Inverse

Dynamics Tool, are explained.

3.5.1 IMU Placer Tool

Firstly, an OpenSim model must be loaded in the OpenSim program. The Rajagopal

model was used for this study. After the model is loaded, the IMU sensors are

positioned on the model; thus, the model is calibrated.

Sensors positioned on the subject should be in approximately the same positions as

the sensors positioned on the model, and the sensor axes should be as parallel as

possible to the human anatomical planes.

The interface and adjustments of the tool are presented in Figure 3.9.

Figure 3.9. OpenSim IMU Placer Tool

29

This procedure can also be implemented through Matlab. Matlab code is presented

in Figure 3.10.

Figure 3.10. Matlab code for OpenSim IMU Placer

3.5.2 IMU Inverse Kinematics Tool

Opensim Inverse Kinematics (IK) Tool is the interface where kinematic analysis is

performed. This interface is presented in Figure 3.11.

Figure 3.11. OpenSim IK Tool

30

As input to this tool, the sensor data should be provided together with the information

of which sensor it belongs to. The input data, "mlab.sto", is presented in Figure 3.12

for the lower extremity and Figure 3.13 for the upper extremity. The first five rows

of this document contain the information that must be supplied to OpenSim, and the

sixth row includes time and the sensor names defined in OpenSim. The following

rows contain sensor orientation data in the form of quaternion. The output of this

tool is the subject's joint angles.

Figure 3.12. Lower extremity input data for OpenSim IK Tool

Figure 3.13. Upper extremity input data for OpenSim IK Tool

This procedure can also be implemented through Matlab. Matlab codes are presented

in Figure 3.14.

31

Figure 3.14. Matlab code for OpenSim IK Tool

3.5.3 Inverse Dynamics Setup

Opensim Inverse Dynamics (ID) Tool is the interface where kinetic analysis is

performed. This interface is presented in Figure 3.15.

Figure 3.15. OpenSim ID Tool

Joint angles previously computed by the IK tool and Ground Reaction Forces (GRFs)

measured by force platforms are input to this tool. Output is the joint moments of the

subject.

32

3.5.4 Animation of the Motion

Kinematic and kinetic data performed by the subject can be animated by using the

OpenSim interface or Matlab. As presented in Figure 3.16, GRF can be visualized

by associating the GRF data with OpenSim ID Tool.

Figure 3.16. Visualizing Ground Reaction Forces

3.6 Interpretation of Code

3.6.1 Code for Kinematic Analysis System

The block diagram of the kinematic analysis system is presented in Figure 3.17. This

system consists of two parts; on Matlab and OpenSim. The Matlab Part starts with

data acquisition from the IMU sensors and ends with the generation of "mlab.sto"

file. All the code used in this part work with the Matlab program (.m file), and the

main code is TestCpp. This code ensures that the data from IMU sensors is read;

directed to the relevant Codegens, and the resulting data, which is "mlab.sto", is

33

generated. This file includes information about sensor orientations as quaternions

with related segment names.

Matrices code separates the sensor data according to sensor indexes and directs them

to the corresponding Calculation code. Calculation1 is for the pelvis sensor,

Calculation2 is for right distal and proximal leg sensors, Calculation 3 is for the left

distal and proximal leg sensors, and Calculation4 is for the foot sensors. Calculation

code align the sensor axes to the NED reference frame. Then data is filtered. After

the filtering process, the orientation of the sensor frame relative to the World

Reference Frame is computed as a quaternion with the help of the AHRSAlgorithm

and the first five thousand data point of motion data. AHRSAlgorithm contains

Madgwick Algorithm. By using the measured quaternion as an input to the

AHRSalgorithm code, the rest of the motion data is transferred through the

AHRSalgorithm code again, and the "mlab.sto" file is generated. This file contains

orientation of each sensor with related bodies defined in OpenSim. The file is then

used in OpenSim program for IMU Placer, and IMU IK tool, respectively. As a

result, ''ik_Subject1_orientations.mot'' file is generated that contains the subject's

joint angles.

34

Figure 3.17. Block diagram of the kinematic analysis system

The same procedure is applied for both upper and lower extremity kinematic analysis

systems. The main difference is in Calculation codes for the upper extremity motion

analysis system, Calculation1 is for the torso sensor, Calculation2 is for right

proximal and distal arm sensors, Calculation 3 is for left proximal and distal arm

sensors, and Calculation4 is for the hand sensors.

The developed codes are TestCpp, Matrices and Calculations1, Calculations2,

Calculations3, and Calculations4. The codes that make calculations based on

quaternions (for lower extremity) are presented in Appendix D, the codes that make

calculations based on Euler angles (for lower extremity) are presented in Appendix

E, and the codes developed for the upper extremity kinematic analysis are presented

in Appendix F.

35

3.6.2 Code for Kinetic Analysis System

The block diagram of the kinetic analysis system is presented in Figure 3.18. The

developed codes are grfmot.m codes for two different walking directions. These

codes are presented in Appendix G.

Figure 3.18. Block diagram of the kinetic analysis system

There are two phases in kinetic analysis. In the first phase, the data obtained from

the force platform is calibrated to obtain moment and force data from the sensor

electrical outputs. Calibration Matrix C1 for Force Plate 1, and Calibration Matrix

C2 for Force Plate 2 are used. The mathematical expression of the calibration process

is given in Eq. 3.23. In this equation, S is unamplified sensor outputs, C is calibration

matrix, F is force in Newtons, and M is moment in Newton.meters. Therefore,

amplified force plate outputs should be divided by 10 for the z-axis of the force plate

to calculate the unamplified force of the z-axis and should be divided by 20 for all

others to compute unamplified outputs.

36

 𝐶1 =

[

−1281.5
−26.6
25.5
3.8

−146.0
1.3

−18.1
1272.1
3.6

−147.0
−0.7
−3.7

 −2.3
−3.3

 1878.8
0.3
−0.4
−0.7

−3.5
−3.5
20.6

 581.8
2.3
5.0

−7.0
−4.9
−3.7
6.8
402.0
−0.03

−10.3
−27.7
−12.1
2.9
−2.0
 295.5]

 (3.21)

 𝐶2 =

[

 1510
34
−33

−5
176
0

 −29
 1519
−1

 −179
 0
−5

 18
1

 3014
−1
−3
−2

 5
−3
23

 789
6
1

−6
−1
4
8
551
2

−8
−33
−19
3
−2
 354]

 (3.22)

{

𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧}

= [𝐶]

{

𝑆𝐹𝑥
𝑆𝐹𝑦
𝑆𝐹𝑧
𝑆𝑀𝑥
𝑆𝑀𝑦
𝑆𝑀𝑧}

 (3.23)

Secondly, the calculation of point of application of force is carried out by using Eqs.

3.24 and 3.25. The application points, relative to the center of the force platform, are

x and y, and h is the thickness of the force plate h is accepted as 0,005 m.

 𝑥 = (−ℎ. 𝐹𝑥 −𝑀𝑦)/𝐹𝑧 (3.24)

 𝑦 = (−ℎ. 𝐹𝑦 +𝑀𝑥)/𝐹𝑧 (3.25)

After these processes, force plates' coordinate frames are transformed to the

OpenSim reference frame; thus "grf.mot" file is generated. This file is given as input

to the ID Tool with the IK results. As a result, "inverse_dynamics.sto" file is

generated, which contains the moments of the subject's joints.

37

CHAPTER 4

4 EXPERIMENTAL SETUP AND DATA ANALYSIS

4.1 Problems of IMU System

Before evaluating the system together with seven sensors, individual sensors were

examined. Three problems were identified which are about unit transformation,

magnetometer calibration and sensor drift.

Firstly, as mentioned before, IMU sensors consist of three main sensors. These

sensors can be used separately or combined. Fused data from all three sensors were

used to get accurate orientation for this system. However, before combining the

sensor data, unit transformations should be applied to LSM9DS1 sensor outputs (for

all three sensors) to correct the output units.

Sensitivity is used to get the correct units for gyroscope and magnetometer outputs.

The sensitivity values of the gyroscope and magnetometer are presented in Table 4.1

[34]. According to this table, gyroscope and magnetometer outputs should be

multiplied by 8.75/1000 dps/LSB and 0.29/1000 gauss/LSB, respectively, before

these outputs can be used in Madgwick Algorithm.

38

Table 4.1 Sensitivity Values

Moreover, the sensitivity value of the accelerometer is presented in Table 4.1

According to the data sheet of LSM9DS1, accelerometer outputs should be

multiplied by 0.061/1000 g/LSB. This information has been verified by series of

experiments.

In these experiments, the calibration constant of the accelerometer is determined by

using gravitational acceleration. Sensors were placed at configurations that are

presented in Figure 4.1, Figure 4.2 and Figure 4.3, respectively, and data was

collected when sensors were standing still. The data from accelerometer axes (that

have gravitational effects) of all seven sensors at each configuration were used to

find the calibration constant. The mean and standard deviation of the measurements

are 16340 LSB/g (0.0612 mg/LSB) and 373 LSB/g, respectively. So, all

accelerometer data should be divided to 16340 to get 1 g for Madgwick input.

39

Figure 4.1. Sensor configuration such that gravitational effect on the z-axis

Figure 4.2. Sensor configuration such that gravitational effect on the x-axis

Figure 4.3. Sensor configuration such that gravitational effect on the y-axis

40

The second problem is magnetometer calibration. Because of the magnetic

interference, erroneous heading estimates from the magnetometer might be obtained

[36]. A magnetometer calibration process is challenging since whenever the

magnetometer is placed at a new place, it should be recalibrated [37]. Therefore,

Madgwick Distortion Compensation was used to overcome this problem which is

explained in Section 3.4.

The last problem is gyroscope drift. It is a frequent problem for IMU studies, and the

Butterworth filter can be used to remove noise from raw data and correct the

gyroscope drift [38], [39]. 6th-order lowpass Butterworth filter with a cut-off

frequency of 6 Hz was used for this system for data sampled at 100 Hz [14].

All the problems of the IMU sensors are retested by static experimental setups,

namely single sensor experiments, multiple sensor experiments on mechanical test

equipment and also on subject experiments.

4.2 Single Sensor Motion Analysis

Before assessing all sensors, one sensor's orientation was tested by conducting a

series of experiments. All different orientations of the sensors (foot, right and left

legs and pelvis placement) were evaluated separately. The initial orientation of the

foot sensors is presented in Figure 4.4. The related sensor is rotated around a single

axis (x, y, z) at different pre-defined angles (±30, ±45, ±60, ±90) in these experiments

and readings were tested.

Figure 4.4. Experimental setup for single sensor motion analysis

41

Before using sensor output in the Madgwick Algorithm, axes of the sensor are

arranged in North-East-Down (NED) order. For example, the y-axis for the foot

placement orientation shown in Figure 4.4 was changed to x, x changed to -y, and z

changed to -z. After using this data as an input of the Madgwick Algorithm, there

are two options to reset the initial orientations of the sensors. The resetting process

is the alignment of the initial sensor frame to the Earth reference frame. It can be

reset by using Euler angles, then converted to quaternion or reset directly as a

quaternion. Both options have been evaluated in this thesis.

The first option is using the Madgwick Algorithm output as Euler Angles to reset the

initial orientation before changing into a quaternion. The steps of the right leg sensor

processes are presented in Figure 4.5 and Figure 4.6. The raw output of the

Madgwick Algorithm as Euler Angles is presented in Figure 4.5; it can be seen that

the angle switches +180 degrees after it passes to -180 degrees. Hence, the first

correction is the correction of the shift, and the result of this process is presented in

Figure 4.6. The second step is the resetting of the initial orientation of the sensor by

using the first twenty data points, and the final result after operations is presented in

Figure 4.7.

Figure 4.5. The first output of the right leg sensor

42

Figure 4.6. Angle correction of the right leg sensor

Figure 4.7. Offset correction of the right leg sensor

43

The same procedures for the Euler Angle option and the result for the left leg sensor

are presented in Figure 4.8, Figure 4.9 and Figure 4.10, respectively.

Figure 4.8. The first output of the left leg sensor

Figure 4.9. Angle correction of the left leg sensor

44

Figure 4.10. Offset correction of the left leg sensor

Results of the foot sensor rotated around the +x axis at +60 degrees, +y axis at +45

degrees, and +z axis at -30 degrees are presented below.

Figure 4.11. Foot sensor rotated around +x axes at +60 degrees

45

Figure 4.12. Foot sensor rotated around +y axes at +45 degrees

Figure 4.13. Foot sensor rotated around +z axes at -30 degrees

Additionally, the first experimental results with Euler Angles showed that in the case

of NED ordered input, Madgwick Algorithm sensor outputs are in North-West-Up

(NWU) order. Therefore, before using the data for OpenSim, the rotation of NWU

ordered IMU data to the OpenSim world frame is defined as -pi/2 rad around x-axes.

The second option is using the Madgwick Algorithm output directly as quaternion to

reset the initial orientation. Equation 4.1 is used to reset the orientation [35]. �̆�𝑓 is

the main quaternion data that includes examined movement, �̆�𝑚 is the quaternion

data of the initial orientation of the sensor, and * is the quaternion product.

46

 �̆� = �̆�𝑓 ∗ �̆�𝑚 (4.1)

After this step, all the sensor placement orientations were evaluated for each axis and

frames were arranged in North-West-Up order. The second option was chosen

because of Euler Angles' gimbal lock problem.

4.3 Multiple Sensor Motion Analysis with Mechanical Test Equipment

There are seven sensors placed on a human in our analysis setup. Two sensors are

placed on the right and left feet, two at distal part of right and left legs, two at

proximal part of right and left legs, and one at the pelvis of a human for the lower

extremity analysis system. For the upper extremity analysis system, two sensors are

placed on the right and left hands, two at distal part of right and left arms, two at

proximal part of right and left arms, and one at the torso of a human. When these

sensors are placed on human limbs, a couple of problems might affect the signal.

The first thing that may disturb the signal is noise. Butterworth filter is one of the

most used filters in the literature for preprocessing the IMU data in human

biomechanics [40], [41]. Low pass Butterworth filter with 6th order 6 Hz cut-off

frequency was used for the system to remove noise [14].

Secondly, the OpenSim world frame is different from the Madgwick Algorithm

World frame. Therefore, it should be transformed by using the sensor to OpenSim

rotations. As mentioned in the previous chapters, the sensor frame orientations are

transformed in NED order before using in Madgwick Algorithm, and the output of

Madgwick Algorithm is defined in NWU order. So, sensor to OpenSim rotation is

defined as -pi/2 at x-axes. Section 3.1 explains this transformation process.

Additionally, the initial positions of the IMU sensors are important. OpenSim model

must be calibrated before processing the movement data. In the calibration process,

initial positions of the IMU frames are found by using OpenSim model body

segments and IMU calibration data. The calibration pose of the model was chosen

as the default pose, which is all the joints of the model at neutral. Neutral pose is

47

presented in Figure 4.14. The subject should stand in the same pose as the neutral

pose when data acquisition is started.

Figure 4.14. Neutral pose of the Rajagopal model

The last effect is the precision of the sensors and human movement. The sensors are

LSM9DS1 by SparkFun. This sensor type was chosen because of the low price, but

it has slightly worse accuracy (compared to the majority of sensors used in this field)

since it is linear acceleration typical zero-g level offset accuracy is ±90 mg, zero-

gauss level is ±1 gauss and angular rate typical zero-rate level ±30 dps [34], [42].

Additionally, the electronic circuit and embedded communication systems of the

sensors are custom-made. So, the accuracy of the overall system was not known.

In the Section 4.1, the individual sensor problems and solutions are presented, but

the overall system tests were needed to assess the related problems above. This need

led to design and manufacture passive mechanical system to assess multiple sensors

with known angles.

48

4.3.1 Design of Mechanical System

Before designing the mechanical system, literature was searched to decide the

dimensions. Rajagopal_2016 model was used as a biomechanical model [43].

Rajagopal et al. used a 170 cm tall, 75 kg male model's bony geometry and

dimensions [43], [44]. The exact dimensions were scaled and used to design a

mechanical model. The reason for scaling is to use less material. The scale of the

designed equipment to anthropometric data is 0,72. IMU sensor dimensions were

considered to decide on the scale.

The designed model has six joints, two at the hip, two at the knee, two at the ankle,

and four DOF at each joint. The fourth DOF is caused by the design of the standard

parts. Standard parts were designed for joints because it was thought that rather than

changing the femur part, changing a relatively smaller standard part is more efficient.

Designed test equipment is presented in Figure 4.15.

Figure 4.15. Mechanical test equipment

49

Part 1, Part 2, Part 7 and Part 8 are the standard parts of the system. Joints of the

system consist of these parts. Part 3 is a model of the pelvis. The pelvis sensor is

attached to Part 3. Part 4, Part 5 and Part 6 are femur, tibia and foot parts,

respectively, where the related IMU sensors bind to these parts with the correct

orientation. Technical drawings are available at Appendix A.

4.3.2 Manufacturing of Mechanical System

The designed passive human lower extremity model was manufactured at METU

Mechanical Engineering Machine Shop. CNC milling machine and lathe were used

for the manufacturing.

Polyoxymethylene (trade name Delrin®) was used to manufacture mechanical test

equipment. The reason Delrin® is preferred for this system is that it does not have an

effect on the magnetometer. Also, it has dimensional stability and high strength when

compared to other material options for this system [45].

The manufactured mechanical system is presented in Figure 4.16.

Figure 4.16. Manufactured test equipment

50

4.3.3 Multi-Sensor Experiments Results for Lower Extremity

Multi-sensor experiments were performed using seven sensors. The sensors are

positioned on both feet, two tibias, two femurs, and the pelvis of the mechanical test

equipment. Positioning is presented in Figure 4.17.

Figure 4.17. Sensor Positions

Data was collected by calibrating the sensors to receive data simultaneously, all the

sensor axes were arranged in NWU order, and joint angles were obtained using the

Madgwick Algorithm and OpenSim Inverse Kinematics module. Detailed

information about Madgwick Algorithm and OpenSim IMU Placer Tool, and

OpenSim IMU Inverse Kinematics module can be found in Section 3.5.1 and Section

3.5.2, respectively.

There were a couple of experiments conducted in this part. Firstly, right and left

ankle joints move separately in the direction of dorsiflexion-plantar flexion,

abduction-adduction, and inversion-eversion at approximately 30, 45, 60, 90

51

degrees. In the second group experiments, just about 30, 45, 60, and 90 degrees of

flexion-extension, abduction-adduction, and internal-external rotation movements

were carried out separately at the right and left knee joints. Third group experiments

include around 30, 45, 60, and 90 degrees of flexion-extension, abduction-adduction,

and internal-external rotation movements at right and left hip joints. Lastly, the

overall model was turned right and left. Then, as a result of the analysis, it was

examined whether the joint angles performed in the experiment were obtained as a

result of the analysis.

As a part of this thesis, two experimental results are examined deeper, which are 30

degrees knee flexion-extension and 30 degrees hip adduction-abduction. The knee

flexion-extension experiment is presented in Figure 4.18, and the hip adduction-

abduction experiment is presented in Figure 4.19.

Figure 4.18. Knee flexion-extension experiment

52

Figure 4.19. Hip adduction-abduction experiment

Rajagopal_2015 model is used in OpenSim. OpenSim IMU Placer Tool and IMU IK

Tool adjustments for the right knee 30-degree experiment can be seen in Figures 4.20

and 4.21.

53

Figure 4.20. OpenSim IMU Placer Tool adjustment

Figure 4.21. OpenSim IMU IK adjustment

54

The test results are presented below.

Figure 4.22. Right knee flexion-extension experiment results

Figure 4.23. Right hip adduction-abduction experiment results

55

In these experiments, although there was isolated motion in one joint of the

mechanical test equipment, the motion was also observed in the other joints of the

related limb (in this case right leg). This is because these joints are interconnected

with the muscle models in the OpenSim model. Also, Rajagopal model has restrictive

motion since it only allows pelvic rotation, pelvic tilt, pelvic list, hip rotation, hip

adduction, hip flexion, knee flexion, ankle inversion, ankle dorsiflexion and toe

flexion [43]. As an example of the non-isolated motion, in Figure 4.22, flexion was

observed in the right hip joint since the Rajagopal biomechanical model does not

allow some movements (e.g. hyperextension at knee joint), it performs other allowed

movements when there is data from the sensors for this movement.

4.3.4 Multi-Sensor Experiments Results for Upper Extremity

The experiments were performed using seven sensors. Mechanical test equipment

was used for these tests. Mechanical testing equipment was designed for lower

extremity experiments. However, since the angles and related joint movements are

the same, it was used in these experiments by making all the joints of the mechanical

test equipment similar to the neutral position of the upper extremity of the Rajagopal

model.

The sensors are positioned on both feet parts, two tibia parts, two femur parts, and

the pelvis parts of the mechanical test equipment. The foot of the mechanical test

equipment is accepted as hand, the proximal part of the leg as the proximal part of

the arm, the distal part of the leg as the distal part of the arm and pelvis as the torso.

There were a couple of experiments conducted with this arrangement. Firstly, right

and left wrist joints move separately in the three directions. In the second group

experiments, right and left elbow joint were performed flexion-extension and

pronation-supination movements. Third group experiments include flexion-

extension, abduction-adduction, and internal-external rotation movements at right

and left shoulder joints.

56

The right shoulder adduction-abduction experiment result is presented in Figure

4.24. In this experiment, approximately 10-degree right shoulder abduction

movement and an approximately 90 degrees right shoulder abduction movement

were performed.

Figure 4.24. Right shoulder adduction-abduction experiment results

The left shoulder adduction-abduction experiment result is presented in Figure 4.25.

In this experiment, the subject performed approximately 80-degree left shoulder

abduction movement and approximately 10 degrees left shoulder adduction

movement.

Figure 4.25. Left shoulder adduction-abduction experiment results

57

The left elbow flexion experiment result is presented in Figure 4.26. In this

experiment left elbow flexed to 80-90 degrees.

Figure 4.26. Left elbow flexion experiment results

Results and patterns are consistent with the movements. However, as similar to lower

extremity tests, the movement of one joint also affects other joints. Especially, this

movement is a movement that the Rajagopal model cannot perform (restricted

movement of the model joints), it is transferred to other joints.

4.4 Multiple Sensor Kinematic and Kinetic Analysis with Human

Movement Data

The last step of the motion analysis test is to examine the system with human gait

data. For these tests, recorded kinematic data from IMU system and kinetic data from

force plates at METU Biomechanics Laboratory were used.

58

4.4.1 Kinematic and Kinetic Gait Analysis with Human Subject

Ethical approval for this study was obtained from Middle East Technical University

Applied Ethics Research Center İAEK with protocol number 0393-ODTUİAEK-

2022, which is presented in Appendix B.

In these tests, IMU data was collected from a female subject with sensors attached

to the subject's distal and proximal parts of legs, pelvis and feet. IMU data and force

plate data were synchronized to collect data simultaneously. Experimental setup is

presented in Figure 4.27.

Figure 4.27. Experimental Setup

Forty sets of data from the subject were collected when the subject was walking on

the path where force plates were placed. Walking direction is important for force

59

plates and kinetic analysis. Different codes must be used for different directions.

Therefore, the subject walked both in Direction 1 and Direction 2, which is presented

in Figure 4.27, to test the code.

The processing of kinematic and kinetic data are described in Chapter 3.

One of the kinematic gait analysis results, when the subject walked to Direction 1, is

presented and the results were compared with the literature.

In this experiment, the subject took seven steps, waited 10 seconds before and after

movement and third and fourth steps coincided with Force Plate 1 and 2,

respectively.

Right hip and left hip flexion results are presented in Figure 4.28. Results are

consistent with the experiments of Fukuchi et al. [46]. They found that maximum

flexion and extension were 35 and -10 degrees.

Figure 4.28. Right hip and left hip flexion results

In addition, a comparison of the hip flexion results of the developed system and the

study of Bovi et al. is presented in Figure 4.29 [47]. In this figure, it can be seen that

the patterns are compatible. The differences are thought to be due to the subject's

specific gait pattern.

60

Figure 4.29. Hip flexion comparison for one gait cycle (reproduced from [47])

Right hip, left hip and pelvis rotation results are presented in Figure 4.31. As

mentioned before, the subject stands still for 10 seconds before walking. Figure 4.31

shows that there is a drift in the rotation results. Also, drift in the right and left hip

adduction, pelvis tilt and pelvis list results are presented in Figure 4.35. This drift

problem was caused by the drift observed in the pelvis sensor data. Figure 4.30 shows

the pelvis sensor data in the NWU order. Although the subject is standing still in the

first 10 seconds, it is seen that the drift slope, especially in the x and z axes, is more

noticeable. This drift is consistent with the findings from the pelvis rotation and

pelvis list results.

61

Figure 4.30. Pelvis sensor Euler angles result in NWU order

A slope correction code (presented in Appendix H) was written to solve this problem.

In this code, the inclination is measured and corrected by using the first one thousand

data points, which coincides with the first 10 seconds of the data.

Right hip, left hip and pelvis rotation results after correction are presented in Figure

4.32.

Figure 4.31. Right hip, left hip and pelvis rotation first results

62

Figure 4.32. Rotation results after slope correction

Different patterns have been found in the literature for hip rotation results. The

result calculated by the new system is consistent with the result shared by Fukuchi

et al., which is presented in Figure 4.34 [46].

Figure 4.33. Hip rotation comparison for one gait cycle (reproduced from [47])

63

Figure 4.34. Hip rotation for one gait cycle according to Fukuchi et al. [46]

Right and left hip adduction, pelvis tilt and pelvis list results are presented in Figure

4.35. Because of the drift in these results, the same slope correction code was applied

to the data. The results after correction are presented in Figure 4.36.

Figure 4.35. Right hip adduction, left hip adduction, pelvis tilt and pelvis list first

results

64

Figure 4.36. Right hip adduction, left hip adduction, pelvis tilt and pelvis list results

after slope correction

Different patterns have been found in the literature for pelvis tilt results. The result

calculated by the new system is more consistent with the result shared by Fukuchi

et al., which is presented in Figure 4.38 [46].

Figure 4.37. Pelvis tilt comparison for one gait cycle (reproduced from [47])

65

Figure 4.38. Pelvis tilt for one gait cycle according to Fukuchi et al. [46]

It can be seen in the pelvic list comparison results presented in Figure 4.39 that the

calculated results are consistent with the literature [47].

Figure 4.39. Pelvis list comparison for one gait cycle (reproduced from [47])

Right and left knee flexion results are presented in Figure 4.40, and comparison of

the results is shared in Figure 4.41. Patterns of the curves are consistent with the

experiments of Fukuchi et al. [46] and Bovi et al. [47]. They found that maximum

knee flexion was 70 degrees. However, results showed that the subject's left knee

66

flexion is 30 degrees maximum. It is thought that the subject's unique gait pattern

caused this result.

Figure 4.40. Right knee and left knee flexion results

Figure 4.41. Knee flexion comparison for one gait cycle (reproduced from [47])

67

In several kinematic data (e.g., pelvic list), drift has been detected, and it is thought

that the reasons for this are especially the unwanted motion of the pelvis sensor

during movement and drift of the pelvis sensor data. The pelvic sensor is the main

sensor and therefore is likely to cause some angles to shift. This issue was solved by

using the slope correction code. Overall, kinematic analysis results showed that the

general pattern is stable.

Before examining the kinematic analysis, GRFs were examined. GRFs from two

different kinetic analysis experiments are presented in Figures 4.42 and 4.43. In the

first experiment, the subject walked through Direction 1 and in the second

experiment subject walked to Direction 2.

Force Plate 1 and 2 coincide with the right and left foot in the first experiment,

respectively. In the second experiment, Force Plate 1 coincide with the left step and

Force Plate 2 with the right step.

Additionally, GRF from previous kinetic analysis experiments in the same setup with

a different subject (male subject walking through Direction 1) is presented in Figure

4.44.

Figure 4.42. GRF in the first kinetic analysis experiment (red line: force plate 1 x

axis, dark blue line: force plate 1 y axis, green line: force plate 1 z axis, pink line:

force plate 2 x axis, blue line: force plate 2 y axis, grey line: force plate 2 z axis)

68

Figure 4.43. GRF in the second kinetic analysis experiment (red line: force plate 1

x axis, dark blue line: force plate 1 y axis, green line: force plate 1 z axis, pink line:

force plate 2 x axis, blue line: force plate 2 y axis, grey line: force plate 2 z axis)

Figure 4.44. GRF example in the previous kinetic analysis experiments (red line:

force plate 1 x axis, dark blue line: force plate 1 y axis, green line: force plate 1 z

axis, pink line: force plate 2 x axis, blue line: force plate 2 y axis, grey line: force

plate 2 z axis)

69

When comparing the experimental data from previous experiments, it is thought that

there is an impairment in the x-axis of Force Plate 1. Therefore, previous

experimental data were used to interpret kinetic gait analysis by using data from

Force Plate 1. On the other hand, new experimental data were used to interpret

kinetic gait analysis by using data from Force Plate 2 (both walking in Direction 1

and Direction 2).

Kinetic gait analysis results from Force Plate 1 are presented in Figure 4.45 for the

right leg.

Figure 4.45. Right leg kinetic analysis results

Kinetic gait analysis results from Force Plate 2 (when the subject is walking in

Direction 1) is presented in Figure 4.46.

70

Figure 4.46. Left leg kinetic analysis results when subject walking to Direction 1

Kinetic gait analysis results from Force Plate 2 (when the subject walking in

Direction 2) is presented in Figure 4.47.

Figure 4.47. Right leg kinetic analysis results when subject is walking in Direction

2

71

The kinetic analysis results are self-consistent and also consistent with the results in

the literature [46], [47]. However, two issues were detected when comparing with

the literature results.

The first issue is that it has been noticed that some curves are inverse of the literature.

Knee flexion-extension moment is an example of this issue, and it is noticed that this

problem is caused by the flexion moment defined to increase progressively in the +y

direction in OpenSim. However, it has been seen in the literature that this parameter

is defined to decrease in the +y direction.

Secondly, it has been found in the literature that kinetic parameters are shared in a

normalized manner. When obtained moments were normalized with the weight of

subjects and compared with the literature data, it was observed that experimental

results were higher than those in the literature. However, as a result of the

comparison of the data of different subjects with different weights, it was observed

that the data were consistent within themselves. Additional clinical studies may be

required to calibrate the force platforms to another calibrated sensor.

4.4.2 Kinematic Analysis for Human Upper Extremity

Ethical approval for this study was obtained from Middle East Technical University

Applied Ethics Research Center İAEK with protocol number 0393-ODTUİAEK-

2022, which is presented in Appendix B.

In these tests, IMU sensors were attached to the female subject's upper extremity

segments (torso, hands, right and left proximal and distal parts of arms) and 10 set

shoulder flexion-extension, shoulder abduction-adduction, elbow flexion-extension,

elbow pronation-supination data were collected with the help of IMU sensors. In

these experiments, the right and left segments performed the same movement at the

same time.

The processing of kinematic data is described in Chapter 3.

72

The subject flexed her shouders to the highest degree possible in the shoulder flexion

experiment. Shoulder flexion-extension analysis results are presented in Figure 4.48.

Figure 4.48. Shoulder flexion kinetic analysis results

The subject flexed her right and left elbows to the highest degree possible in the

elbow flexion experiment. Elbow flexion analysis results are presented in Figure

4.49.

Figure 4.49. Elbow flexion kinetic analysis results

73

In the elbow pronation-supination experiment, subject pronated and then supinate

left and right elbows simultaneously. The analysis results are presented in Figure

4.50.

Figure 4.50. Elbow pronation-supination kinetic analysis results

As a result of the experiments, the expected movements in the joints were observed.

However, unexpected movements were also observed. This situation can be clearly

seen in Figure 4.50. It is thought that there are two main reasons for these unexpected

motions.

The first reason is the sensor positions. Due to the subject anatomy, sensor positions

can be slightly different from the sensor placements on the Rajagopal model. It is the

first reason that unwanted movements to are observed in the joints.

The second reason is that Rajagopal model joints have anatomical limitations. If the

joints try to exceed these limitations, the OpenSim program evaluates IMU data from

related segments by using other IMU data and transfers this motion to other joints.

74

75

CHAPTER 5

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis deals with the development of an IMU based motion analysis system for

upper and lower limbs for METU Biomechanics Laboratory. The study is organized

into two parts. In the first part, the necessary system developments were carried out,

then experiments were conducted to test the system in the second part.

After reviewing the literature, the first step was enhancing pre-written code to make

the kinematic analysis system perform accurately with seven IMU sensors. The

system is designed to perform both upper and lower limb kinematic analysis. After

performing coordinate system transformations, sensor fusion is implemented for

each IMU sensor with Madgwick's Algorithm [31]. Later, the resulting data are

merged, and joint angles are computed using the Inverse Kinematics Tool of the

OpenSim. Moreover, motion animation is also developed to observe the motion.

In the second part of the study, the performance of the system was studied with the

help of a series of experiments. Primarily, individual sensors were tested, and it was

detected that the problems were generally related to the coordinate system. Therefore

the necessary coordinate system transformations were performed again.

Furthermore, at this step, it was realized that it is more accurate to work with

quaternions instead of Euler angles. The codes were modified according to this new

approach.

Next, a mechanical test system was designed and manufactured for multi-sensor

experiments. The kinematic analysis system was tested by collecting data from seven

sensors simultaneously by using the mechanical test system. It was noticed that due

to the interconnected design of the joints in the OpenSim model, the movement of

76

one joint could also affect other joints. Additionally, drift was detected at some of

the kinematic analysis results, and this was corrected with slope correction code.

Thereafter, force plates are used for kinetic analysis. GRFs, moments, the points of

application and the data generated through kinematic analysis are given as input to

the OpenSim Inverse Dynamics Tool. Thus, the system was developed to calculate

the joint reaction moments of the subject.

Finally, proof-of-concept experiments with a human subject were conducted. Ethics

committee approval was obtained for these experiments. Kinematic and kinetic data

(for the lower limb system) were captured from the subject during walking. The drifts

found in the data were removed by using an add-on code. Also, shoulder flexion-

extension, shoulder abduction-adduction, elbow flexion-extension, and elbow

pronation-supination data were collected from the subject and analyzed

kinematically. Overall, results of these analyzes were found to be consistent with the

literature.

5.2 Future Work

Firstly, two sensor-specific problems should be considered in future studies. For

IMU sensors, experiments should be carried out to verify the drift correction code

and also other filters, different from the Butterworth filter, may be applied to solve

the drift problem. As for the force platform, distortion was detected in the data from

x-axis of the Force Plate 1. It is believed that a hardware-related problem causes this

distortion, and therefore it should be investigated.

Secondly, even though experiments to verify the accuracy of the system have been

performed, it is important and necessary to perform experiments to verify the

sensitivity of the system. The sensitivity of the system is assumed to be low due to

the low sensitivity of the LSM9DS1 sensors. Therefore, it might be necessary to

upgrade the sensors. Additionally, it is recommended to conduct a controlled clinical

77

trial to compare the system with a commercially available system in terms of

sensitivity.

Furthermore, the discrete operation of the codes complicates the use of the system.

In terms of system integrity, it could be important to compile the data collection

code, pre-processing code, Madgwick Algorithm and OpenSim codes, which will

accelerate the operation of the system.

Finally, during data collection, several issues were encountered. These issues were

determined as failure to record sensor data, incomplete recording, missing data,

irregular data recording between IMU and force plate, and incorrect recording of

sensor numbers if the IMUs are farther away from the receiver. Therefore, the system

and codes related to data collection need to be enhanced with more sensitive sensors

and a user-friendly interface. Additionally, the visualization of the sensor battery

levels and the development of comfortable and practical connection tools for

connecting the sensors to the user will increase the performance of the system.

79

REFERENCES

[1] M. W. Whittle, ''Basic sciences,'' in Gait Analysis:An Introduction, 4th ed. U.K.:

Butterworth-Heinemann, 2007, ch. 1, pp. 1-45.

[2] D. Cech and S. T. Martin, Functional Movement Development Across the Life

Span, 3rd ed. Philadelphia, PA, USA: Saunders, 2011.

[3] T. P. Andriacchi and E. J. Alexander, “Studies of human locomotion: Past,

present and future,” in Journal of Biomechanics, 2000, doi: 10.1016/S0021-

9290(00)00061-0.

[4] M. Akhtaruzzaman, A. A. Shafie, and M. R. Khan, “Gait analysis: Systems,

technologies, and importance,” Journal of Mechanics in Medicine and

Biology. 2016, doi: 10.1142/S0219519416300039.

[5] A. Muro-de-la-Herran, B. García-Zapirain, and A. Méndez-Zorrilla, “Gait

analysis methods: An overview of wearable and non-wearable systems,

highlighting clinical applications,” Sensors (Switzerland). 2014, doi:

10.3390/s140203362.

[6] H. Güler, “Biomechanical modeling of lower extremity and simulation of foot

during gait,” Ph.D. dissertation, Dept. Mech. Eng., Middle East Technical

Univ., Ankara, Turkey, 1998.

[7] M. Shafiq, "Motion tracking in gait analysis," M.S. thesis, Dept. Mech. Eng.,

Middle East Technical Univ., Ankara, Turkey, 1998.

[8] Y. Karpat, "Development and testing of kinematic data acquisition tools for a

gait analysis system," M.S. thesis, Dept. Mech. Eng., Middle East Technical

Univ., Ankara, Turkey, 2000.

80

[9] H. Afşar, "Evaluation and compensation of soft tissue movement artefacts for the

kiss gait analysis system," M.S. thesis, Dept. Mech. Eng., Middle East

Technical Univ., Ankara, Turkey, 2001.

[10] B. Söylemez, "An investigation on the gait analysis protocol of the "kiss"

motion analysis system," M.S. thesis, Dept. Mech. Eng., Middle East

Technical Univ., Ankara, Turkey, 2002.

[11] E. Civek, "Comparison of kinematic results between metu-kiss &

ankarauniversity-vicon gait analysis systems," M.S. thesis, Dept. Mech. Eng.,

Middle East Technical Univ., Ankara, Turkey, 2006.

[12] P. Kafalı, "Evaluation of sensitivity of metu gait analysis system," M.S. thesis,

Dept. Mech. Eng., Middle East Technical Univ., Ankara, Turkey, 2007.

[13] K. Erer, "Verification and matlab implementation of the inverse dynamics

model of the metu gait analysis system," M.S. thesis, Dept. Mech. Eng.,

Middle East Technical Univ., Ankara, Turkey, 2008.

[14] M. Biçer, " On the implementation of Opensim: Applications of marker-based

and inertial measurement unit based systems," M.S. thesis, Dept. Mech. Eng.,

Middle East Technical Univ., Ankara, Turkey, 2019.

[15] J. K. Aggarwal and Q. Cai, “Human Motion Analysis: A Review,” Comput.

Vis. Image Underst., 1999, doi: 10.1006/cviu.1998.0744.

[16] M. Rana and V. Mittal, “Wearable Sensors for Real-Time Kinematics Analysis

in Sports: A Review,” IEEE Sens. J., 2021, doi:

10.1109/JSEN.2020.3019016.

[17] B. Kalita, J. Narayan, and S. K. Dwivedy, “Development of Active Lower Limb

Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review,”

International Journal of Social Robotics. 2021, doi: 10.1007/s12369-020-

00662-9.

81

[18] G. X. Lee and K. S. Low, “A factorized quaternion approach to determine the

arm motions using triaxial accelerometers with anatomical and sensor

constraints,” IEEE Trans. Instrum. Meas., 2012, doi:

10.1109/TIM.2011.2181884.

[19] R. Haddas and K. L. Ju, “Gait Alteration in Cervical Spondylotic Myelopathy

Elucidated by Ground Reaction Forces,” Spine (Phila. Pa. 1976)., 2019, doi:

10.1097/BRS.0000000000002732.

[20] D. Sethi, S. Bharti, and C. Prakash, “A comprehensive survey on gait analysis:

History, parameters, approaches, pose estimation, and future work,”

Artificial Intelligence in Medicine. 2022, doi:

10.1016/j.artmed.2022.102314.

[21] H. Zhou and H. Hu, “Human motion tracking for rehabilitation-A survey,”

Biomedical Signal Processing and Control. 2008, doi:

10.1016/j.bspc.2007.09.001.

[22] D. T. P. Fong and Y. Y. Chan, “The use of wearable inertial motion sensors in

human lower limb biomechanics studies: A systematic review,” Sensors

(Switzerland). 2010, doi: 10.3390/s101211556.

[23] Y. Fan, Y. Fan, Z. Li, C. Lv, and D. Luo, “Natural gaits of the non-pathological

flat foot and high-arched foot,” PLoS One, 2011, doi:

10.1371/journal.pone.0017749.

[24] M. Iosa, P. Picerno, S. Paolucci, and G. Morone, “Wearable inertial sensors for

human movement analysis,” Expert Review of Medical Devices. 2016, doi:

10.1080/17434440.2016.1198694.

[25] C. Bonnyaud, D. Pradon, R. Zory, D. Bensmail, N. Vuillerme, and N. Roche,

“Does a single gait training session performed either overground or on a

treadmill induce specific short-term effects on gait parameters in patients

with hemiparesis? a randomized controlled study,” Top. Stroke Rehabil.,

2013, doi: 10.1310/tsr2006-509.

82

[26] G. Vasco et al., “Functional and gait assessment in children and adolescents

affected by Friedreich’s ataxia: A one-year longitudinal study,” PLoS One,

2016, doi: 10.1371/journal.pone.0162463.

[27] A. P. Shortland, “Gait and clinical gait analysis,” in Clinical Engineering, 2020.

[28] W. Sun, J. Wu, W. Ding, and S. Duan, “A robust indirect kalman filter based

on the gradient descent algorithm for attitude estimation during dynamic

conditions,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2997250.

[29] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation

vectors,” Matrix, 2006.

[30] R. Mahony, T. Hamel, and J. M. Pflimlin, “Nonlinear complementary filters on

the special orthogonal group,” IEEE Trans. Automat. Contr., 2008, doi:

10.1109/TAC.2008.923738.

[31] S. O. H. Madgwick, “An efficient orientation filter for inertial and

inertial/magnetic sensor arrays,” Rep. x-io Univ. …, 2010.

[32] “Mathematical Model of an IMU,” 2022. [Online]. Available:

https://nitinjsanket.github.io/tutorials/attitudeest/madgwick. [Accessed: July

28, 2022].

[33] “Coordinate Systems,” 2017. [Online]. Available: https://simtk-

confluence.stanford.edu:8443/display/OpenSim/Coordinate+Systems.

[Accessed: July 28, 2022].

[34] ST, “iNEMO inertial module: 3D accelerometer, 3D gyroscope, 3D

magnetometer,” LSM9DS1 datasheet, Mar. 2015 [Rev 3].

[35] M. K. Özgören. (2020). Advanced dynamics, Middle East Technical University

[PDF Document].

83

[36] M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson, and H. Luinge, “Calibration of

a magnetometer in combination with inertial sensors,” in 15th International

Conference on Information Fusion, FUSION 2012, 2012.

[37] M. Kok and T. B. Schon, “Magnetometer calibration using inertial sensors,”

IEEE Sens. J., 2016, doi: 10.1109/JSEN.2016.2569160.

[38] R. Takeda, G. Lisco, T. Fujisawa, L. Gastaldi, H. Tohyama, and S. Tadano,

“Drift removal for improving the accuracy of gait parameters using wearable

sensor systems,” Sensors (Switzerland), 2014, doi: 10.3390/s141223230.

[39] S. Majumder and M. Jamal Deen, “Wearable IMU-Based System for Real-Time

Monitoring of Lower-Limb Joints,” IEEE Sens. J., 2021, doi:

10.1109/JSEN.2020.3044800.

[40] T. McGrath, R. Fineman, and L. Stirling, “An auto-calibrating knee flexion-

extension axis estimator using principal component analysis with inertial

sensors,” Sensors (Switzerland), 2018, doi: 10.3390/s18061882.

[41] M. V. McCabe, D. W. Van Citters, and R. M. Chapman, “Developing a method

for quantifying hip joint angles and moments during walking using neural

networks and wearables,” Comput. Methods Biomech. Biomed. Engin.,

2022, doi: 10.1080/10255842.2022.2044028.

[42] “Adafruit LSM9DS1 Accelerometer + Gyro + Magnetometer 9-DOF

Breakout,” 2017. [Online]. Available: https://learn.adafruit.com/adafruit-

lsm9ds1-accelerometer-plus-gyro-plus-magnetometer-9-dof-breakout.

[Accessed: July 28, 2022].

[43] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L.

Delp, “Full-Body Musculoskeletal Model for Muscle-Driven Simulation of

Human Gait,” IEEE Trans. Biomed. Eng., 2016, doi:

10.1109/TBME.2016.2586891.

84

[44] C. C. Gordon, T. Churchill, C. E. Clauser, J. T. Mcconville, I. Tebbetts, and R.

A. Walker, “1988 Anthropometric Survey of U. S. Army Personnel: Methods

and Summary Statistics,” Security, 1988.

[45] “The High-Performance Acetal Resin,” 2022. [Online]. Available:

https://www.dupont.com/brands/delrin.html#:~:text=Delrin%C2%AE%20a

cetal%20homopolymer%20(Polyoxymethylene,%C2%B0C)%20and%20go

od%20colorability. [Accessed: July 28, 2022].

[46] C. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “A public dataset of overground

and treadmill walking kinematics and kinetics in healthy individuals,” PeerJ,

2018, doi: 10.7717/peerj.4640.

[47] G. Bovi, M. Rabuffetti, P. Mazzoleni, and M. Ferrarin, “A multiple-task gait

analysis approach: Kinematic, kinetic and EMG reference data for healthy

young and adult subjects,” Gait Posture, 2011, doi:

10.1016/j.gaitpost.2010.08.009.

[48] “Musculoskeletal Models,” 2017. [Online]. Available: https://simtk-

confluence.stanford.edu:8443/display/OpenSim/Musculoskeletal+Models#:

~:text=OpenSim%20Core%20Models,-

Models%20included%20with&text=Simulating%20and%20analyzing%20h

uman%20movement,both%20kinematics%20and%20dynamics%20analyse

s.&text=Primarily%20lower%20extremity%20model%20with%20two%20l

egs%20and%20a%20lumped%20torso%20segment.,-

Includes%2023%20degrees. [Accessed: July 28, 2022].

[49] S. Winiarski and A. Rutkowska-Kucharska, “Estimated ground reaction force

in normal and pathological gait,” Acta Bioeng. Biomech., 2009.

85

APPENDICES

A. Technical Drawings of Mechanical System

Technical Drawings of the mechanical test equipment are presented as.

86

87

88

89

90

91

92

93

94

B. Ethical Approval

95

C. Preprocessing Matlab Codes

• Preprocessing Data Code 1

clc;
clear;
dataPath ='C:\Users\selin\Desktop\DENEY\1.txt';
B = dlmread(dataPath);
numbodies = 7;
numdata = length(B);
numframe = numdata/numbodies;

m = 1;
b = 1;
v=1;
y=1;
f=1;
g=1;
e=1;
a=1;
c=1;

b2=zeros(300,12);
b3=zeros(300,12);
b4=zeros(300,12);
b5=zeros(300,12);
b6=zeros(300,12);
b7=zeros(300,12);
b8=zeros(300,12);

%% group data according to sensor numbers

 for i = 1:length(B)
 switch B(i,1)
 case 2
 b2(a,1:end) = B(i,1:end);
 a=a+1;
 case 3
 b3(v,1:end) = B(i,1:end);
 v=v+1;
 case 4
 b4(y,1:end) = B(i,1:end);
 y=y+1;
 case 5
 b5(f,1:end) = B(i,1:end);
 f=f+1;
 case 6
 b6(g,1:end) = B(i,1:end);
 g=g+1;
 case 7
 b7(e,1:end) = B(i,1:end);
 e=e+1;

96

 case 8
 b8(c,1:end) = B(i,1:end);
 c=c+1;
 end
 end

X= [b2; b3; b4; b5; b6; b7; b8];

%% write grouped data

fid = fopen('C:\Users\selin\Desktop\DENEY\2.txt','w');
for i=1:numdata
 fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\n ',X(i,1:end));
end
 fclose(fid);

• Preprocessing Data Code 2

clc;
clear;
dataPath ='C:\Users\selin\Desktop\DENEY\3.txt';
B = dlmread(dataPath);
numbodies = 7;
numdata = length(B);
numframe= numdata/numbodies;

% find mean of accelerometer-magnetometer data by using first 100

data

m = 1;
b = 1;

for z = 1:7

 for a = 6:11

 C(z,(a-5)) = fix(mean(B(m:m+99,a)));

 end
m = b*numframe+1;
b = b+1
end

D(1,:) = [[2 0 0 0 0], C(1,:), 0];
D(2,:) = [[3 0 0 0 0], C(2,:), 0];
D(3,:) = [[4 0 0 0 0], C(3,:), 0];
D(4,:) = [[5 0 0 0 0], C(4,:), 0];

97

D(5,:) = [[6 0 0 0 0], C(5,:), 0];
D(6,:) = [[7 0 0 0 0], C(6,:), 0];
D(7,:) = [[8 0 0 0 0], C(7,:), 0];

for i=1:5000
 E(i,:) = D(1,:);
 F(i,:)= D(2,:);
 G(i,:) = D(3,:);
 H(i,:) = D(4,:);
 I(i,:) = D(5,:);
 S(i,:) = D(6,:);
 J(i,:) = D(7,:);
end

%rewrite data with first 5000 data are the mean of first 100 data

point

line_index =100;

fid = fopen('C:\Users\selin\Desktop\DENEY\4.txt','w+','n','UTF-8');

 fseek(fid,0,-1);

for z = 1:5000

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',E(i,1),

E(i,2),E(i,3),E(i,4),E(i,5),E(i,6),E(i,7),E(i,8),E(i,9),E(i,10),E(i

,11),E(i,12));

end

for k=1: numframe

A = B(k,:);
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A);

end

%%

for z = 1:5000

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t

%.0f\n',F(i,1),F(i,2),F(i,3),F(i,4),F(i,5),F(i,6),F(i,7),F(i,8),F(i

,9),F(i,10),F(i,11),F(i,12));

end

98

for k=1: numframe

A = B((k+numframe),:);
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A);

end

%%

for z = 1:5000

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t

%.0f\n',G(i,1),G(i,2),G(i,3),G(i,4),G(i,5),G(i,6),G(i,7),G(i,8),G(i

,9),G(i,10),G(i,11),G(i,12));

end

for k=1: numframe

A = B((k+(numframe*2)),:);
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A);

end

%%

for z = 1:5000

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t

%.0f\n',H(i,1),H(i,2),H(i,3),H(i,4),H(i,5),H(i,6),H(i,7),H(i,8),H(i

,9),H(i,10),H(i,11),H(i,12));

end

for k=1: numframe

A = B((k+(numframe*3)),:);
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A);

end

%%

for z = 1:5000

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t

99

%.0f\n',I(i,1),I(i,2),I(i,3),I(i,4),I(i,5),I(i,6),I(i,7),I(i,8),I(i

,9),I(i,10),I(i,11),I(i,12));
end

for k=1: numframe

A = B((k+(numframe*4)),:);
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A);

end

%%

for z = 1:5000

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t

%.0f\n',S(i,1),S(i,2),S(i,3),S(i,4),S(i,5),S(i,6),S(i,7),S(i,8),S(i

,9),S(i,10),S(i,11),S(i,12));

end

for k=1: numframe

A = B((k+(numframe*5)),:);
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A);

end

%%

for z = 1:5000

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t

%.0f\n',J(i,1),J(i,2),J(i,3),J(i,4),J(i,5),J(i,6),J(i,7),J(i,8),J(i

,9),J(i,10),J(i,11),J(i,12));

end

for k=1:numframe

A = B((k+numframe*6),:);
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A);

end

fprintf(fid,'\r\n');
fclose(fid);

100

D. Lower Extremity Kinematic Analysis Codes with Quaternions

• TestCpp

function C = TestCpp(dataPath)
 %#codegen
fprintf('#App starting..\n\n');
rootpath = '';
%%
if isdeployed()
 if (nargin<1)
 dataPath='';
 msgbox('Input datapath is empty/null');
 end
else

dataPath ='C:\Users\selin\Desktop\DENEY\1111.txt';
 rootpath = 'C:\Users\selin\Desktop\';
end

if isempty(dataPath)== false
 fprintf('loading file from %s\n',dataPath);
 B = dlmread(dataPath);
 B = B(:,1:end-1);
 numbodies = 7;
 numdata = length(B);

if numdata>=numbodies
 numframe = numdata/numbodies;
 diff = numframe - 5000;
 [C] = Matrices7(B,numbodies,numdata,numframe);
 pelvis = (C.pelvis);
 femurR = (C.femurR);
 femurL = (C.femurL);
 tibiaR = (C.tibiaR);
 footR = (C.footR);
 footL = (C.footL);
 tibiaL = (C.tibiaL);

 % Write to file
 fid = fopen('mlab.sto','w+','n','UTF-8');
 fseek(fid,0,-1);

 fprintf(fid,'\r\nDataRate=100.000000');
 fprintf(fid,'\r\nDataType=Quaternion');
 fprintf(fid,'\r\nversion=3');
 fprintf(fid,'\r\nOpenSimVersion=4.3');
 fprintf(fid,'\r\nendheader');

 fprintf(fid,'\r\ntime ');
 fprintf(fid,'\t pelvis_imu');

101

 fprintf(fid,'\t tibia_r_imu');
 fprintf(fid,'\t femur_r_imu');
 fprintf(fid,'\t calcn_r_imu');
 fprintf(fid,'\t calcn_l_imu');
 fprintf(fid,'\t tibia_l_imu');
 fprintf(fid,'\t femur_l_imu');
 line_index =1;

 for k=5000: numframe

 fprintf(fid,'\r\n%.2f\t',(line_index/100.0));

 lpelvis1 = pelvis(k,1);
 lpelvis2 = pelvis(k,2);
 lpelvis3 = pelvis(k,3);
 lpelvis4 = pelvis(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lpelvis1, lpelvis2,

lpelvis3, lpelvis4);

 ltibiar1 = tibiaR(k,1);
 ltibiar2 = tibiaR(k,2);
 ltibiar3 = tibiaR(k,3);
 ltibiar4 = tibiaR(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', ltibiar1, ltibiar2,

ltibiar3, ltibiar4);

 lfemurr1 = femurR(k,1);
 lfemurr2 = femurR(k,2);
 lfemurr3 = femurR(k,3);
 lfemurr4 = femurR(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lfemurr1, lfemurr2,

lfemurr3, lfemurr4);

 lfootr1 = footR(k,1);
 lfootr2 = footR(k,2);
 lfootr3 = footR(k,3);
 lfootr4 = footR(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lfootr1, lfootr2,

lfootr3, lfootr4);

 lfootl1 = footL(k,1);
 lfootl2 = footL(k,2);
 lfootl3 = footL(k,3);
 lfootl4 = footL(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lfootl1, lfootl2,

lfootl3, lfootl4);

 ltibial1 = tibiaL(k,1);
 ltibial2 = tibiaL(k,2);
 ltibial3 = tibiaL(k,3);
 ltibial4 = tibiaL(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', ltibial1, ltibial2,

ltibial3, ltibial4);

102

 lfemurl1 = femurL(k,1);
 lfemurl2 = femurL(k,2);
 lfemurl3 = femurL(k,3);
 lfemurl4 = femurL(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f', lfemurl1, lfemurl2,

lfemurl3, lfemurl4);

 line_index = line_index+1;
 end
 end

 fprintf(fid,'\r\n');
 fclose(fid);

end

%%
clear all;
close all;
clc;
import org.opensim.modeling.*

%% OpenSim variables
modelFileName = 'Rajagopal_2015.osim';
orientationsFileName = 'mlab.sto';
sensor_to_opensim_rotations = Vec3(-pi/2, 0, 0);
baseIMUName = 'pelvis_imu';
baseIMUHeading = 'x';
visulizeCalibration = true;

%% IMUPlacer tool
imuPlacer = IMUPlacer();

% IMUPlacer properties
imuPlacer.set_model_file(modelFileName);
imuPlacer.set_orientation_file_for_calibration(orientationsFileName

);
imuPlacer.set_sensor_to_opensim_rotations(sensor_to_opensim_rotatio

ns);
imuPlacer.set_base_imu_label(baseIMUName);
imuPlacer.set_base_heading_axis(baseIMUHeading);

imuPlacer.run(visulizeCalibration);

model = imuPlacer.getCalibratedModel();

%% calibrated model
model.print(strrep(modelFileName, '.osim', '_calibrated.osim'));

%% Clear the Workspace variables.
clear all; close all; clc;
import org.opensim.modeling.*

103

%% OpenSim variables
modelFileName = 'Rajagopal_2015_calibrated.osim';
orientationsFileName = 'mlab.sto';
sensor_to_opensim_rotation = Vec3(-pi/2, 0, 0);
visualizeTracking = true;
startTime = 0;
endTime = 40;
resultsDirectory = 'IKResults';

%% InverseKinematicsTool
imuIK = IMUInverseKinematicsTool();

%% tracking
imuIK.set_model_file(modelFileName);
imuIK.set_orientations_file(orientationsFileName);
imuIK.set_sensor_to_opensim_rotations(sensor_to_opensim_rotation)

imuIK.set_time_range(0, startTime);
imuIK.set_time_range(1, endTime);

imuIK.set_results_directory(resultsDirectory)

% Run IK

imuIK.run(visualizeTracking);
fprintf('#Finished\n');
end

• Matrices

function [C] = Matrices7(A,numbodies,numdata,numframe)
rt = 1;rf = 1;p = 1;lf = 1;lt = 1; rfo=1; lfo=1;
B = A(1:numdata,:);
numcolB = size(B,2);
imufield1 = 'val';
imufield2 = 'bodynames';
nul1 = cell(1,numbodies);
nul2 = cell(1,numbodies);

for i = 1:numbodies
 nul1{i} = zeros(numdata,numcolB-1);
 nul2{i} = 'al';
end

imu = struct(imufield1,nul1,imufield2,nul2);
for i = 1:length(B)
 switch B(i,1)
 case 2
 imu(6).val(rfo,:) = B(i,2:end); %right foot
 imu(6).bodynames = 'rfo';

104

 rfo = rfo+1;
 case 3
 imu(1).val(rt,:) = B(i,2:end); %right tibia
 imu(1).bodynames = 'rt';
 rt = rt+1;
 case 4
 imu(2).val(rf,:) = B(i,2:end); %right femur
 imu(2).bodynames = 'rf';
 rf = rf+1;
 case 5
 imu(3).val(p,:) = B(i,2:end); %pelvis
 imu(3).bodynames = 'pe';
 p = p+1;
 case 6
 imu(4).val(lf,:) = B(i,2:end); %left femur
 imu(4).bodynames = 'lf';
 lf = lf+1;
 case 7
 imu(5).val(lt,:) = B(i,2:end); %left tibia
 imu(5).bodynames = 'lt';
 lt = lt+1;
 case 8
 imu(7).val(lfo,:) = B(i,2:end); %left foot
 imu(7).bodynames = 'lf0';
 lfo = lfo+1;
 end
end

[C.pelvis] = Calculations(imu(3).val(1:numframe,:));
[C.footR] = Calculations4(imu(6).val(1:numframe,:));
[C.footL] = Calculations4(imu(7).val(1:numframe,:));
[C.femurR] = Calculations2(imu(2).val(1:numframe,:));
[C.femurL] = Calculations3(imu(4).val(1:numframe,:));
[C.tibiaR] = Calculations2(imu(1).val(1:numframe,:));
[C.tibiaL] = Calculations3(imu(5).val(1:numframe,:));

trc_frame_no = size(C.pelvis,4);
num_frame = trc_frame_no-5000;

• Calculations

function out = Calculations(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5; %in sensor text document acceleration columns are 5,6 and 7
gy = 2; %in sensor text document angular velocity columns are 2,3

and 4
m = 8; %in sensor text document magnetic measurement columns are

8,9 and 10

105

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = -B(:,a+2)/acc_mult;%acc z
A(:,a+1) = -B(:,a)/acc_mult;%acc x
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y

A(:,gy) = -B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+1) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = -B(:,m+2)/magno_mult; %magno z
A(:,m+1) = B(:,m)/magno_mult; %magno x
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion1 = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);

for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

q0 = mean(quaternionst(av-10:av,:));
q1=quaternConj(q0);

AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion1(t, :) = AHRS2.Quaternion;

106

q2(t, :)=quaternConj(quaternion1(t, :));
quaternion2(t, :)=quaternProd(q2(t, :),q0);
quaternion2(t, 4)=-quaternion2(t, 4);

end

out=(quaternion2);

• Calculations2

function out = Calculations2(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;
gy = 2;
m = 8;

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = -B(:,a)/acc_mult;%acc x
A(:,a+1) = B(:,a+2)/acc_mult;%acc z
A(:,a+2) = -B(:,a+1)/acc_mult; %acc y

A(:,gy) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = B(:,m)/magno_mult; %magno x
A(:,m+1) = B(:,m+2)/magno_mult; %magno z
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y

%%

dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);

107

Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);

for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

q0 = mean(quaternionst(av-10:av,:));
q1=quaternConj(q0);

AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

for t = 1:length(time)

AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
quaternion1(t, :) = AHRS2.Quaternion;
q2(t, :)=quaternConj(quaternion1(t, :));
quaternion2(t, :)=quaternProd(q2(t, :),q0);
quaternion2(t, 4)=-quaternion2(t, 4);

end
out=(quaternion2);

• Calculations3

function out = Calculations3(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;
gy = 2;
m = 8;

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = B(:,a)/acc_mult;%acc x
A(:,a+1) = B(:,a+2)/acc_mult;%acc z
A(:,a+2) = B(:,a+1)/acc_mult;%acc y

108

A(:,gy) = B(:,gy)/gyro_mult; %gyro x
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+2) = B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = -B(:,m)/magno_mult; %magno x
A(:,m+1) = B(:,m+2)/magno_mult; %magno z
A(:,m+2) = B(:,m+1)/magno_mult; %magno y

%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion1 = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);

for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

q0 = mean(quaternionst(av-10:av,:));

• Calculations4

function out = Calculations4(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;%in sensor text document acceleration columns are 5,6 and 7
gy = 2;%in sensor text document angular velocity columns are 2,3

and 4
m = 8;%in sensor text document magnetic measurement columns are 8,9

and 10

109

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = B(:,a+1)/acc_mult;% acc y
A(:,a+1) = -B(:,a)/acc_mult;%acc x
A(:,a+2) = -B(:,a+2)/acc_mult;%acc z

A(:,gy) = B(:,gy+1)/gyro_mult; %gyro y
A(:,gy+1) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+2) = -B(:,gy+2)/gyro_mult; %gyro z

A(:,m) = B(:,m+1)/magno_mult; %magno y
A(:,m+1) = B(:,m)/magno_mult; %magno x
A(:,m+2) = -B(:,m+2)/magno_mult; %magno z
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);

for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

q0 = mean(quaternionst(av-10:av,:));
q1=quaternConj(q0);

AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion1(t, :) = AHRS2.Quaternion;
q2(t, :)=quaternConj(quaternion1(t, :));
quaternion2(t, :)=quaternProd(q2(t, :),q0);

110

quaternion2(t, 2)=-quaternion2(t, 2);

end

111

E. Lower Extremity Kinematic Analysis Codes with Euler Angles

• Calculations

function out = Calculations(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;%in sensor text document acceleration columns are 5,6 and 7
gy = 2;%in sensor text document angular velocity columns are 2,3

and 4
m = 8;%in sensor text document magnetic measurement columns are 8,9

and 10

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;
A(:,a) = -B(:,a+2)/acc_mult;%acc z
A(:,a+1) = -B(:,a)/acc_mult;%acc x
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y

A(:,gy) = -B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+1) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = -B(:,m+2)/magno_mult; %magno z
A(:,m+1) = B(:,m)/magno_mult; %magno x
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);
for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

112

q0 = mean(quaternionst(av-10:av,:));
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion(t, :) = AHRS2.Quaternion;

end

euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use

conjugate for sensor frame relative to Earth and convert to

degrees.
euler=eulercorrect(euler,step);
ksimat = euler(:,3)-mean(euler(1:20,3));
thmat = euler(:,2)-mean(euler(1:20,2));
fimat = euler(:,1)-mean(euler(1:20,1));

for i = 1:length(fimat)
 quat(i,:) =

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180);
end

out=(quat);

• Calculations2

function out = Calculations2(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;
gy = 2;
m = 8;

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = -B(:,a)/acc_mult;%acc x
A(:,a+1) = B(:,a+2)/acc_mult;%acc z
A(:,a+2) = -B(:,a+1)/acc_mult; %acc y

A(:,gy) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = B(:,m)/magno_mult; %magno x
A(:,m+1) = B(:,m+2)/magno_mult; %magno z

113

A(:,m+2) = -B(:,m+1)/magno_mult; %magno y

%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);

for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

q0 = mean(quaternionst(av-10:av,:));
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion(t, :) = AHRS2.Quaternion;
 quaternion2(t, :) = quaternion(t,:)- quaternConj(q0);
end

euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use

conjugate for sensor frame relative to Earth and convert to

degrees.
euler=eulercorrect(euler,step);
ksimat = euler(:,3)-mean(euler(1:20,3));
thmat = euler(:,2)-mean(euler(1:20,2));
fimat = euler(:,1)-mean(euler(1:20,1));

for i = 1:length(fimat)
 quat(i,:) =

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180);
end

out=(quat);

114

• Calculations3

function out = Calculations3(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;
gy = 2;
m = 8;

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;
A(:,a) = B(:,a)/acc_mult;%acc x
A(:,a+1) = B(:,a+2)/acc_mult;%acc z
A(:,a+2) = B(:,a+1)/acc_mult; %acc y

A(:,gy) = B(:,gy)/gyro_mult; %gyro x
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+2) = B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = -B(:,m)/magno_mult; %magno x
A(:,m+1) = B(:,m+2)/magno_mult; %magno z
A(:,m+2) = B(:,m+1)/magno_mult; %magno y
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);
for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

q0 = mean(quaternionst(av-10:av,:));
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

115

for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion(t, :) = AHRS2.Quaternion;
 quaternion2(t, :) = quaternion(t,:)- quaternConj(q0);
end

euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use

conjugate for sensor frame relative to Earth and convert to

degrees.
euler=eulercorrect(euler,step);
ksimat = euler(:,3)-mean(euler(1:20,3));
thmat = euler(:,2)-mean(euler(1:20,2));
fimat = euler(:,1)-mean(euler(1:20,1));

for i = 1:length(fimat)
 quat(i,:) =

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180);
end

out=(quat);

• Calculations4

function out = Calculations4(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;%in sensor text document acceleration columns are 5,6 and 7
gy = 2;%in sensor text document angular velocity columns are 2,3

and 4
m = 8;%in sensor text document magnetic measurement columns are 8,9

and 10

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = B(:,a+1)/acc_mult;% acc y
A(:,a+1) = -B(:,a)/acc_mult;%acc x
A(:,a+2) = -B(:,a+2)/acc_mult;%acc z

A(:,gy) = B(:,gy+1)/gyro_mult; %gyro y
A(:,gy+1) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+2) = -B(:,gy+2)/gyro_mult; %gyro z

A(:,m) = B(:,m+1)/magno_mult; %magno y

116

A(:,m+1) = B(:,m)/magno_mult; %magno x
A(:,m+2) = -B(:,m+2)/magno_mult; %magno z
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);
for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end

q0 = mean(quaternionst(av-10:av,:));
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion(t, :) = AHRS2.Quaternion;
 quaternion2(t, :) = quaternion(t,:)- quaternConj(q0);
end

euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use

conjugate for sensor frame relative to Earth and convert to

degrees.
euler=eulercorrect(euler,step);
ksimat = euler(:,3)-mean(euler(1:20,3));
thmat = euler(:,2)-mean(euler(1:20,2));
fimat = euler(:,1)-mean(euler(1:20,1));

for i = 1:length(fimat)
 quat(i,:) =

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180);
end

out = quat;

117

F. Upper Extremity Kinematic Analysis Codes

• TestCpp

function C = TestCpp7(dataPath)
 %#codegen
fprintf('#App starting..\n\n');
rootpath = '';
%%
if isdeployed()
 if (nargin<1)
 dataPath='';
 msgbox('Input datapath is empty/null');
 end
else
 dataPath ='C:\Users\selin\Desktop\DENEY\1.txt';

 rootpath = 'C:\Users\selin\Desktop\';
end

if isempty(dataPath)== false
 fprintf('loading file from %s\n',dataPath);
 B = dlmread(dataPath);
 B = B(:,1:end-1);
 numbodies = 7;
 numdata = length(B);
 if numdata>=numbodies
 numframe = numdata/numbodies;
 diff = numframe - 5000;
 [C] = Matrices7(B,numbodies,numdata,numframe);
 torso = (C.torso);
 humerusR = (C.humerusR);
 humerusL = (C.humerusL);
 ulnaR = (C.ulnaR);
 handR = (C.handR);
 handL = (C.handL);
 ulnaL = (C.ulnaL);

 % Write to file
 fid = fopen('mlab.sto','w+','n','UTF-8');
 fseek(fid,0,-1);

 fprintf(fid,'\r\nDataRate=100.000000');
 fprintf(fid,'\r\nDataType=Quaternion');
 fprintf(fid,'\r\nversion=3');
 fprintf(fid,'\r\nOpenSimVersion=4.3');
 fprintf(fid,'\r\nendheader');

 fprintf(fid,'\r\ntime ');
 fprintf(fid,'\t torso_imu');

118

 fprintf(fid,'\t ulna_r_imu');
 fprintf(fid,'\t humerus_r_imu');
 fprintf(fid,'\t hand_r_imu');
 fprintf(fid,'\t hand_l_imu');
 fprintf(fid,'\t ulna_l_imu');
 fprintf(fid,'\t humerus_l_imu');
 line_index =1;

 for k=5000: numframe

 fprintf(fid,'\r\n%.2f\t',(line_index/100.0));

 ltorso1 = torso(k,1);
 ltorso2 = torso(k,2);
 ltorso3 = torso(k,3);
 ltorso4 = torso(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', ltorso1, ltorso2,

ltorso3, ltorso4);

 lulnar1 = ulnaR(k,1);
 lulnar2 = ulnaR(k,2);
 lulnar3 = ulnaR(k,3);
 lulnar4 = ulnaR(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lulnar1, lulnar2,

lulnar3, lulnar4);

 lhumerusr1 = humerusR(k,1);
 lhumerusr2 = humerusR(k,2);
 lhumerusr3 = humerusR(k,3);
 lhumerusr4 = humerusR(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lhumerusr1,

lhumerusr2, lhumerusr3, lhumerusr4);

 lhandr1 = handR(k,1);
 lhandr2 = handR(k,2);
 lhandr3 = handR(k,3);
 lhandr4 = handR(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lhandr1, lhandr2,

lhandr3, lhandr4);

 lhandl1 = handL(k,1);
 lhandl2 = handL(k,2);
 lhandl3 = handL(k,3);
 lhandl4 = handL(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lhandl1, lhandl2,

lhandl3, lhandl4);

 lulnal1 = ulnaL(k,1);
 lulnal2 = ulnaL(k,2);
 lulnal3 = ulnaL(k,3);
 lulnal4 = ulnaL(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lulnal1, lulnal2,

lulnal3, lulnal4);

119

 lhumerusl1 = humerusL(k,1);
 lhumerusl2 = humerusL(k,2);
 lhumerusl3 = humerusL(k,3);
 lhumerusl4 = humerusL(k,4);
 fprintf(fid,'%.6f,%.6f,%.6f,%.6f', lhumerusl1,

lhumerusl2, lhumerusl3, lhumerusl4);

 line_index = line_index+1;
 end
 end

 fprintf(fid,'\r\n');
 fclose(fid);

end

%%
clear all;
close all;
clc;
import org.opensim.modeling.*

%% OpenSim variables
modelFileName = 'Rajagopal_2015.osim'; % The path to an

input model
orientationsFileName = 'mlab.sto'; % The path to orientation data

for calibration
sensor_to_opensim_rotations = Vec3(pi/2, 0, 0);% The rotation of

IMU data to the OpenSim world frame
baseIMUName = 'torso_imu'; % The base IMU is

the IMU on the base body of the model that dictates the heading

(forward) direction of the model.
baseIMUHeading = '-x'; % The Coordinate

Axis of the base IMU that points in the heading direction.
visulizeCalibration = true; % Boolean to

Visualize the Output model

%% imuPlacer
imuPlacer = IMUPlacer();

imuPlacer.set_model_file(modelFileName);
imuPlacer.set_orientation_file_for_calibration(orientationsFileName

);
imuPlacer.set_sensor_to_opensim_rotations(sensor_to_opensim_rotatio

ns);
imuPlacer.set_base_imu_label(baseIMUName);
imuPlacer.set_base_heading_axis(baseIMUHeading);

imuPlacer.run(visulizeCalibration);

model = imuPlacer.getCalibratedModel();

120

model.print(strrep(modelFileName, '.osim', '_calibrated.osim'));
%%
clear all; close all; clc;
import org.opensim.modeling.*

%% OpenSim Variables
modelFileName = 'Rajagopal_2015_calibrated.osim'; %

The path to an input model
orientationsFileName = 'mlab.sto'; % The path to orientation data

for calibration
sensor_to_opensim_rotation = Vec3(pi/2, 0, 0); % The rotation of

IMU data to the OpenSim world frame
visualizeTracking = true; % Boolean to Visualize the tracking

simulation
startTime = 0; % Start time (in seconds) of the tracking

simulation.
endTime = 40; % End time (in seconds) of the tracking

simulation.
resultsDirectory = 'IKResults';

%% InverseKinematicsTool
imuIK = IMUInverseKinematicsTool();

%% tracking
imuIK.set_model_file(modelFileName);
imuIK.set_orientations_file(orientationsFileName);
imuIK.set_sensor_to_opensim_rotations(sensor_to_opensim_rotation)

imuIK.set_time_range(0, startTime);
imuIK.set_time_range(1, endTime);

imuIK.set_results_directory(resultsDirectory)

% Run IK
imuIK.run(visualizeTracking);
fprintf('#Finished\n');
end

• Matrices

function [C] = Matrices7(A,numbodies,numdata,numframe)
rt = 1;rf = 1;p = 1;lf = 1;lt = 1; rfo=1; lfo=1;
B = A(1:numdata,:);
numcolB = size(B,2);
imufield1 = 'val';
imufield2 = 'bodynames';
nul1 = cell(1,numbodies);
nul2 = cell(1,numbodies);
for i = 1:numbodies
 nul1{i} = zeros(numdata,numcolB-1);
 nul2{i} = 'al';
end

121

imu = struct(imufield1,nul1,imufield2,nul2);
for i = 1:length(B)
 switch B(i,1)
 case 2
 imu(6).val(rfo,:) = B(i,2:end); %right hand
 imu(6).bodynames = 'rha';
 rfo = rfo+1;
 case 3
 imu(1).val(rt,:) = B(i,2:end); %right ulna
 imu(1).bodynames = 'ru';
 rt = rt+1;
 case 4
 imu(2).val(rf,:) = B(i,2:end); %right humerus
 imu(2).bodynames = 'rh';
 rf = rf+1;
 case 5
 imu(3).val(p,:) = B(i,2:end); %torso
 imu(3).bodynames = 'to';
 p = p+1;
 case 6
 imu(4).val(lf,:) = B(i,2:end); %left humerus
 imu(4).bodynames = 'lh';
 lf = lf+1;
 case 7
 imu(5).val(lt,:) = B(i,2:end); %left ulna
 imu(5).bodynames = 'lu';
 lt = lt+1;
 case 8
 imu(7).val(lfo,:) = B(i,2:end); %left hand
 imu(7).bodynames = 'lha';
 lfo = lfo+1;
 end
end
[C.torso] = Calculations(imu(3).val(1:numframe,:));
[C.handR] = Calculations4(imu(6).val(1:numframe,:));
[C.handL] = Calculations4(imu(7).val(1:numframe,:));
[C.humerusR] = Calculations2(imu(2).val(1:numframe,:));
[C.humerusL] = Calculations3(imu(4).val(1:numframe,:));
[C.ulnaR] = Calculations2(imu(1).val(1:numframe,:));
[C.ulnaL] = Calculations3(imu(5).val(1:numframe,:));

trc_frame_no = size(C.torso,4);
num_frame = trc_frame_no-5000;

• Calculations

function out = Calculations(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;%in sensor text document acceleration columns are 5,6 and 7
gy = 2;%in sensor text document angular velocity columns are 2,3

and 4

122

m = 8;%in sensor text document magnetic measurement columns are 8,9

and 10

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = -B(:,a+2)/acc_mult;%acc z
A(:,a+1) = -B(:,a)/acc_mult;%acc x
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y

A(:,gy) = -B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+1) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = -B(:,m+2)/magno_mult; %magno z
A(:,m+1) = B(:,m)/magno_mult; %magno x
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y

%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion1 = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);
for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end
q0 = mean(quaternionst(av-10:av,:));
q1=quaternConj(q0);

AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);
for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion1(t, :) = AHRS2.Quaternion;
q2(t, :)=quaternConj(quaternion1(t, :));
quaternion2(t, :)=quaternProd(q2(t, :),q0);

123

quaternion2(t, 4)=-quaternion2(t, 4);
end

out=(quaternion2);

• Calculations2

function out = Calculations2(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;
gy = 2;
m = 8;

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;
A(:,a) = -B(:,a)/acc_mult;%acc x
A(:,a+1) = B(:,a+2)/acc_mult;%acc z
A(:,a+2) = -B(:,a+1)/acc_mult;

A(:,gy) = -B(:,gy)/gyro_mult; %gyro x
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = B(:,m)/magno_mult; %magno x
A(:,m+1) = B(:,m+2)/magno_mult; %magno z
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);
for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;

124

 Cse(:,:,t) = q2mat(quaternionst(t,:));
end
q0 = mean(quaternionst(av-10:av,:));
q1=quaternConj(q0);
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);

for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion1(t, :) = AHRS2.Quaternion;
q2(t, :)=quaternConj(quaternion1(t, :));
quaternion2(t, :)=quaternProd(q2(t, :),q0);
quaternion2(t, 4)=-quaternion2(t, 4);
end

out=(quaternion2);

• Calculations3

function out = Calculations3(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;
gy = 2;
m = 8;

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;
A(:,a) = B(:,a)/acc_mult;%acc x
A(:,a+1) = B(:,a+2)/acc_mult;%acc z
A(:,a+2) = B(:,a+1)/acc_mult;

A(:,gy) = B(:,gy)/gyro_mult; %gyro x
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+2) = B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = -B(:,m)/magno_mult; %magno x
A(:,m+1) = B(:,m+2)/magno_mult; %magno z
A(:,m+2) = B(:,m+1)/magno_mult;
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));

125

Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion1 = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);
for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end
q0 = mean(quaternionst(av-10:av,:));
q1=quaternConj(q0);
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);
for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion1(t, :) = AHRS2.Quaternion;
q2(t, :)=quaternConj(quaternion1(t, :));
quaternion2(t, :)=quaternProd(q2(t, :),q0);
quaternion2(t, 3)=-quaternion2(t, 3);
end

out=(quaternion2);

• Calculations4

function out = Calculations4(B)%#codegen
A = B;
frq = 100;
time = (0:1/frq:(length(A(:,1))-1)/frq)';
step = length(time);
a = 5;%in sensor text document acceleration columns are 5,6 and 7
gy = 2;%in sensor text document angular velocity columns are 2,3

and 4
m = 8;%in sensor text document magnetic measurement columns are 8,9

and 10

%%
acc_mult = 16340;
gyro_mult = 1000/8.75;
magno_mult = 1000/0.29;

A(:,a) = B(:,a+2)/acc_mult;%acc z
A(:,a+1) = B(:,a)/acc_mult;%acc x
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y

A(:,gy) = B(:,gy+2)/gyro_mult; %gyro z
A(:,gy+1) = B(:,gy)/gyro_mult; %gyro x

126

A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y

A(:,m) = B(:,m+2)/magno_mult; %magno z
A(:,m+1) = -B(:,m)/magno_mult; %magno x
A(:,m+2) = -B(:,m+1)/magno_mult;
%%
dur = 1:step;
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)];
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)];
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)];
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3));
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3));
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3));
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end];
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end];
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end];
beta = 0.05;
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta);
quaternion = zeros(length(time), 4);
Cse = zeros(3,3,length(time));
av = 5000;
quaternionst = zeros(av, 4);
for t = 1:av
 AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radians
 quaternionst(t, :) = AHRS.Quaternion;
 Cse(:,:,t) = q2mat(quaternionst(t,:));
end
q0 = mean(quaternionst(av-10:av,:));
q1=quaternConj(q0);
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta',

beta,'Quaternion',q0);
for t = 1:length(time)
 AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:),

Filtered_MAG(t,:)); % gyroscope units must be radian/s
 quaternion1(t, :) = AHRS2.Quaternion;
q2(t, :)=quaternConj(quaternion1(t, :));
quaternion2(t, :)=quaternProd(q2(t, :),q0);
quaternion2(t, 4)=-quaternion2(t, 4);

end

out=(quaternion2);

127

G. Kinetic Analysis Codes

• Grfmot(to Direction 1)

% lab to the window(Direction 1)
fprintf('#App starting..\n\n');
rootpath = '';
%%
if isdeployed()
 if (nargin<1)
 dataPath='';
 msgbox('Input datapath is empty/null');
 end
else
dataPath ='C:\Users\selin\Desktop\bes sensor -

quaternion\yeni\3302_force_plate.txt';
 rootpath = 'C:\Users\selin\Desktop\';
end

if isempty(dataPath)== false
 fprintf('loading file from %s\n',dataPath);
 plate = dlmread(dataPath);
 all_readings = plate(:,1:end-1);
 end
 readings_plate1 = all_readings(:,1:6)/20;
 readings_plate1(:,3) = readings_plate1(:,3)*2;
 readings_plate11=transpose(readings_plate1);

 readings_plate2 = all_readings(:,7:end)/20;
 readings_plate2(:,3) = readings_plate2(:,3)*2;
 readings_plate22=transpose(readings_plate2);

 Cal_C1 = [-1281.5 -18.1 -2.3 -3.5 -7 -10.3;...
 -26.6 1272.1 -3.3 -3.5 -4.9 -27.7;...
 25.5 3.6 1878.8 20.6 -3.7 -12.1;...
 3.8 -147 0.3 581.8 6.8 2.9;...
 -146 -0.7 -0.4 2.3 402 -2.0;...
 1.3 -3.7 -0.7 5 -0.03 295.5];

 Cal_C2 = [1510 -29 18 5 -6 -8;...
 34 1519 1 -3 -1 -33;...
 -33 -1 3014 23 4 -19;...
 -5 -179 -1 789 8 3;...
 176 0 -3 6 551 -2;...
 0 -5 -2 1 2 354];

 FM1 = Cal_C1*readings_plate11;
 FM2 = Cal_C2*readings_plate22;
 FM11=transpose(FM1);
 FM22=transpose(FM2);
 time = size(FM22,1);

128

 zz= 0.005*ones(1,time);
 zzz=transpose(zz);

 %Point of application of force(force plate1; x axis)

 v1=-transpose(zz)*FM1(1,:);
 x1=(v1(1,:)-FM1(5,:))./FM1(3,:);
 x11=transpose(x1);

 %Point of application of force(force plate2; x axis)
 v2=-transpose(zz)*FM2(1,:);
 x2=(v2(1,:)-FM2(5,:))./FM2(3,:);
 x22=transpose(x2);

 %Point of application of force(force plate1; y axis)
 q1=-transpose(zz)*FM1(2,:);
 y1=(q1(1,:)+FM1(4,:))./FM1(3,:);
 y11=transpose(y1);

 %Point of application of force(force plate2; y axis)
 q2=-transpose(zz)*FM2(2,:);
 y2=(q2(1,:)+FM2(4,:))./FM2(3,:);
 y22=transpose(y2);

 rows = size(x11,1);
 cols=19;
 fid = fopen('grf.mot','w+','n','UTF-8');
 fseek(fid,0,-1);
 fprintf(fid,'grf_fp.mot');
 fprintf(fid,'\r\nversion=4.3');
 fprintf(fid,'\r\nnRows=%d',rows);
 fprintf(fid,'\r\nnColumns=%d',cols);
 fprintf(fid,'\r\ninDegrees=yes');
 fprintf(fid,'\r\nendheader');

 fprintf(fid,'\r\ntime ');
 fprintf(fid,'\t fp_1x');
 fprintf(fid,'\t fp_1y');
 fprintf(fid,'\t fp_1z');
 fprintf(fid,'\t p_1x');
 fprintf(fid,'\t p_1y');
 fprintf(fid,'\t p_1z');
 fprintf(fid,'\t fp_2x');
 fprintf(fid,'\t fp_2y');
 fprintf(fid,'\t fp_2z');
 fprintf(fid,'\t p_2x');
 fprintf(fid,'\t p_2y');
 fprintf(fid,'\t p_2z');
 fprintf(fid,'\t m_1x');
 fprintf(fid,'\t m_1y');
 fprintf(fid,'\t m_1z');
 fprintf(fid,'\t m_2x');
 fprintf(fid,'\t m_2y');
 fprintf(fid,'\t m_2z');

129

 line_index =1;

 for k=0: (rows-1)
 fprintf(fid,'\r\n%.2f',0.01*(k+1));%time
 fprintf(fid,'\t%.3f',-FM11(k+1,2));%f1x
 fprintf(fid,'\t%.3f',FM11(k+1,3));%f1y
 fprintf(fid,'\t%.3f',FM11(k+1,1));%f1z
 fprintf(fid,'\t%.3f',-y11(k+1,1));%point1x
 fprintf(fid,'\t%.3f',zzz(k+1,1));%point1y
 fprintf(fid,'\t%.3f',x11(k+1,1));%point1z
 fprintf(fid,'\t%.3f',FM22(k+1,2));%f2x
 fprintf(fid,'\t%.3f',FM22(k+1,3));%f2y
 fprintf(fid,'\t%.3f',-FM22(k+1,1));%f2z
 fprintf(fid,'\t%.3f',y22(k+1,1));%point2x
 fprintf(fid,'\t%.3f',zzz(k+1,1));%point2y
 fprintf(fid,'\t%.3f',-x22(k+1,1));%point2z
 fprintf(fid,'\t%.3f',-FM11(k+1,5));%t1x
 fprintf(fid,'\t%.3f',FM11(k+1,6));%t1y
 fprintf(fid,'\t%.3f',FM11(k+1,4));%t1z
 fprintf(fid,'\t%.3f',FM22(k+1,5));%t2x
 fprintf(fid,'\t%.3f',FM22(k+1,6));%t2y
 fprintf(fid,'\t%.3f',-FM22(k+1,4));%t2z

 end
 fclose(fid);

• Grfmot(to Direction 2)

% lab to the door (Direction 2)
fprintf('#App starting..\n\n');
rootpath = '';
%%
if isdeployed()
 if (nargin<1)
 dataPath='';
 msgbox('Input datapath is empty/null');
 end
else
 dataPath ='C:\Users\selin\Desktop\kd\kd1-fp.txt';

 rootpath = 'C:\Users\selin\Desktop\';
end

if isempty(dataPath)== false
 fprintf('loading file from %s\n',dataPath);
 plate = dlmread(dataPath);
 all_readings = plate(:,1:end-1);
 end
 readings_plate1 = all_readings(:,1:6)/20;
 readings_plate1(:,3) = readings_plate1(:,3)*2;

130

 readings_plate11=transpose(readings_plate1);

 readings_plate2 = all_readings(:,7:end)/20;
 readings_plate2(:,3) = readings_plate2(:,3)*2;
 readings_plate22=transpose(readings_plate2);

 Cal_C1 = [-1281.5 -18.1 -2.3 -3.5 -7 -10.3;...
 -26.6 1272.1 -3.3 -3.5 -4.9 -27.7;...
 25.5 3.6 1878.8 20.6 -3.7 -12.1;...
 3.8 -147 0.3 581.8 6.8 2.9;...
 -146 -0.7 -0.4 2.3 402 -2.0;...
 1.3 -3.7 -0.7 5 -0.03 295.5];

 Cal_C2 = [1510 -29 18 5 -6 -8;...
 34 1519 1 -3 -1 -33;...
 -33 -1 3014 23 4 -19;...
 -5 -179 -1 789 8 3;...
 176 0 -3 6 551 -2;...
 0 -5 -2 1 2 354];

 FM1 = Cal_C1*readings_plate11;
 FM2 = Cal_C2*readings_plate22;
 FM11=transpose(FM1);
 FM22=transpose(FM2);
 time = size(FM22,1);
 zz= 0.005*ones(1,time);
 zzz=transpose(zz);

 %Point force plate1 x

 v1=-transpose(zz)*FM1(1,:);
 x1=(v1(1,:)-FM1(5,:))./FM1(3,:);
 x11=transpose(x1);

 %Point force plate2 x
 v2=-transpose(zz)*FM2(1,:);
 x2=(v2(1,:)-FM2(5,:))./FM2(3,:);
 x22=transpose(x2);

 %Point force plate1 y
 q1=-transpose(zz)*FM1(2,:);
 y1=(q1(1,:)+FM1(4,:))./FM1(3,:);
 y11=transpose(y1);

 %Point force plate2 y
 q2=-transpose(zz)*FM2(2,:);
 y2=(q2(1,:)+FM2(4,:))./FM2(3,:);
 y22=transpose(y2);

 rows = size(x11,1);
 cols=19;

131

 fid = fopen('grf.mot','w+','n','UTF-8');
 fseek(fid,0,-1);
 fprintf(fid,'grf.mot');
 fprintf(fid,'\r\nversion=4.3');
 fprintf(fid,'\r\nnRows=%d',rows);
 fprintf(fid,'\r\nnColumns=%d',cols);
 fprintf(fid,'\r\ninDegrees=yes');
 fprintf(fid,'\r\nendheader');

 fprintf(fid,'\r\ntime ');
 fprintf(fid,'\t fp_1x');
 fprintf(fid,'\t fp_1y');
 fprintf(fid,'\t fp_1z');
 fprintf(fid,'\t p_1x');
 fprintf(fid,'\t p_1y');
 fprintf(fid,'\t p_1z');
 fprintf(fid,'\t fp_2x');
 fprintf(fid,'\t fp_2y');
 fprintf(fid,'\t fp_2z');
 fprintf(fid,'\t p_2x');
 fprintf(fid,'\t p_2y');
 fprintf(fid,'\t p_2z');
 fprintf(fid,'\t m_1x');
 fprintf(fid,'\t m_1y');
 fprintf(fid,'\t m_1z');
 fprintf(fid,'\t m_2x');
 fprintf(fid,'\t m_2y');
 fprintf(fid,'\t m_2z');

 line_index =1;

 for k=0: (rows-1)
 fprintf(fid,'\r\n%.2f',0.01*(k+1));%time
 fprintf(fid,'\t%.3f',FM11(k+1,2));%f1x
 fprintf(fid,'\t%.3f',FM11(k+1,3));%f1y
 fprintf(fid,'\t%.3f',-FM11(k+1,1));%f1z
 fprintf(fid,'\t%.3f',y11(k+1,1));%point1x
 fprintf(fid,'\t%.3f',zzz(k+1,1));%point1y
 fprintf(fid,'\t%.3f',-x11(k+1,1));%point1z
 fprintf(fid,'\t%.3f',-FM22(k+1,2));%f2x
 fprintf(fid,'\t%.3f',FM22(k+1,3));%f2y
 fprintf(fid,'\t%.3f',FM22(k+1,1));%f2z
 fprintf(fid,'\t%.3f',-y22(k+1,1));%point2x
 fprintf(fid,'\t%.3f',zzz(k+1,1));%point2y
 fprintf(fid,'\t%.3f',x22(k+1,1));%point2z
 fprintf(fid,'\t%.3f',FM11(k+1,5));%t1x
 fprintf(fid,'\t%.3f',FM11(k+1,6));%t1y
 fprintf(fid,'\t%.3f',-FM11(k+1,4));%t1z
 fprintf(fid,'\t%.3f',-FM22(k+1,5));%t2x
 fprintf(fid,'\t%.3f',FM22(k+1,6));%t2y
 fprintf(fid,'\t%.3f',FM22(k+1,4));%t2z

 end
 fclose(fid);

132

H. Slope Correction Code

clc;
clear;
if isdeployed()
 if (nargin<1)
 dataPath='';
 msgbox('Input datapath is empty/null');
 end
else
 dataPath ='C:\Users\selin\Desktop\1\add.txt';
 rootpath = 'C:\Users\selin\Desktop\';
end
 rot = dlmread(dataPath);

 coefficients1 = polyfit(rot(1:1000,1), rot(1:1000,2), 1);
 coefficients2 = polyfit(rot(1:1000,1), rot(1:1000,3), 1);
 coefficients3 = polyfit(rot(1:1000,1), rot(1:1000,4), 1);
 coefficients4 = polyfit(rot(1:1000,1), rot(1:1000,5), 1);

% get the slope, which is the first coefficient in the array:
slope1 = coefficients1(1);
slope2 = coefficients2(1);
slope3 = coefficients3(1);
slope4 = coefficients4(1);
new=rot;
time = size(new,1);

for i=1:time
new(i,2)=new(i,2)-slope1*new(i,1);
new(i,3)=new(i,3)-slope2*new(i,1);
new(i,4)=new(i,4)-slope3*new(i,1);
new(i,5)=new(i,5)-slope4*new(i,1);
end

xlswrite('corrected',new);

