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Examination of joint kinematics and kinetics after diseases that affect mobility 

provides information about the movement capacity of the person. The most widely 

used systems in this field are opto-electronic systems. However, these systems are 

expensive and cannot be used outside the laboratory. For this reason, wearable 

technologies (e.g. systems containing inertial sensors), which are relatively new 

systems, have started to take the place of these systems. Wearable technologies are 

more accessible to users and allow for long-term movement monitoring of the person 

outside the laboratory.  

Over the years, many researchers have made efforts to establish and improve the gait 

analysis system at METU Biomechanics Laboratory. After the opto-electronic gait 

analysis, the KISS system, a new Inertial Measurement Units based gait analysis 

system was started to be developed.  

In the first phase of this study, the kinematic and kinetic gait analysis systems were 

developed using data acquired utilizing Inertial Measurement Units (IMUs) and 

force plates. The software is based on an open source software, OpenSim.  
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After adopting the software for available IMU sensors for lower and upper 

extremities, the developed systems were examined and validated qualitatively by 

testing single and multiple sensors with static test setups and additional experiments 

with a human subject. Data was collected, processed and interpreted with the help of 

a lower extremity test setup using seven IMUs. Moreover, gait and upper extremity 

data were collected from a human subject. 

The results of the kinematic gait analysis indicate that drift has been observed 

because of the unwanted motion of the pelvis sensor (which is the main sensor) 

during movement. The drift problem of the results was solved by using the slope 

correction code. Overall, analysis results showed that patterns of the kinematic data 

are consistent with the literature. The differences between some of the final results 

and the values in the literature were thought to be due to sensor sensitivity and the 

subject’s unique gait pattern. 

Although the patterns of the kinetic data are also similar to the patterns of the data in 

the literature, two main problems were observed. First, it was noticed that some of 

the curves were in the reversed order of those in the literature. It is thought that this 

is caused by a difference between the coordinate systems. Secondly, the 

experimental results were found to be larger than those in the literature. However, 

after analyzing the data of different subjects with different weights, it was seen that 

the data was consistent in itself. 

 

Keywords: Gait Analysis, Motion Analysis, Inertial Measurement Unit, OpenSim, 

Force Plate 
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ÖZ 

 

EYLEMSİZLİK ÖLÇER KULLANARAK YÜRÜYÜŞ ANALİZİ 

YAPILMASI 
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Tez Yöneticisi: Doç. Dr. Ergin Tönük 
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Kişinin hareket fonksiyonunu etkileyen hastalıklar sonrası eklem kinematik ve 

kinetiklerinin incelenmesi, kişinin hareket kapasitesi hakkında bilgi vermektedir. Bu 

konuda en yaygın kullanılan sistemler optoelektronik sistemlerdir. Ancak bu 

sistemler pahalıdır ve laboratuvar dışında kullanım imkanı bulunmamaktadır. Bu 

nedenle göreceli olarak yeni sistemler olan giyilebilir teknolojiler(örneğin 

eylemsizlik sensörü içeren sistemler) bu sistemlerin yerini almaya başlamıştır. 

Giyilebilir teknolojiler kullanıcılar tarafından daha ulaşılabilirdir ve laboratuvar 

dışında kişinin uzun süreli hareket takibine imkan sağlayan teknolojilerdir.  

Yıllar içinde bir çok araştırmacı METU Biyomekanik Laboratuvarında bulunan 

yürüyüş analizi sistemini kurmak ve geliştirmek için çaba göstermiştir. İlk yürüyüş 

analizi sistemi olan KİSS sisteminin ardından, eylemsizlik ölçer tabanlı yeni yürüyüş 

analiz sistemi çalışılmaya başlanmıştır.  

Bu çalışmanın ilk bölümünde, kinematik ve kinetik yürüyüş analiz sistemleri, 

eylemsizlik ölçer sensörleri ve kuvvet platformları kullanılarak toplanan veriler 



 

 

viii 

 

kullanılarak geliştirilmiştir. Yazılım açık kaynak kodlu bir yazılım olan OpenSim'e 

dayanmaktadır.  

Alt ve üst ekstremiteler için mevcut eylemsizlik ölçer sensörleri kullanılarak yazılım 

uyarlandıktan sonra geliştirilen sistemler, tek ve çoklu sensörlerin statik deney 

düzenekleri ile denenmesi ve tek denekle gerçekleştirilen  insanlı deneyler 

aracılığıyla incelenmiş ve kavramsal  doğrulama gerçekleştirilmiştir. Yedi 

eylemsizlik ölçer sensörü kullanılarak bir alt ekstremite test düzeneği yardımıyla 

veriler toplanmış, işlenmiş ve yorumlanmıştır. Ayrıca, bir insan denekten yürüyüş 

ve üst ekstremite hareket verileri toplanmıştır. 

Kinematik yürüyüş analizinin sonuçları, hareket sırasında pelvis sensörünün (ana 

sensör) istenmeyen hareketi nedeniyle kayma gözlemlendiğini göstermektedir. 

Sonuçlardaki kayma sorunu eğim düzeltici kod kullanılarak çözülmüştür. Genel 

olarak, analiz sonuçları kinematik veri desenlerinin literatürle tutarlı olduğunu 

göstermiştir. Bazı sonuçlar ile literatürdeki değerler arasındaki farkların sensör 

hassasiyeti ve deneğin kendine özgü yürüyüş biçiminden kaynaklandığı 

düşünülmüştür. 

Kinetik verilerin paternleri de literatürdeki verilerin paternleriyle benzer olsa da 

temel olarak iki sorun gözlemlenmiştir. İlk sorun, bazı eğrilerin literatürdekinin 

tersi olduğunun fark edilmiş olmasıdır. Bu durumun koordinat sistemi farkından 

olduğu düşünülmektedir. İkinci olarak, deneysel sonuçların literatürdekilerden daha 

yüksek değerler olduğu görülmüştür. Ancak farklı ağırlıklara sahip farklı 

deneklerin verilerinin incelenmesi sonucunda, verilerin kendi içinde tutarlı olduğu 

görülmüştür.  

 

Anahtar Kelimeler: Yürüyüş Analizi, Hareket Analizi, Eylemsizlik Ölçer, 

OpenSim, Kuvvet Platformu  
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CHAPTER 1  

1 INTRODUCTION  

Human voluntary movement is one of the most examined multidisciplinary science 

subjects. Since muscles, bones, joints, nerves, spinal cord and brain are involved in 

this process, it is the topic of three main scientific disciplines; anatomy, physiology, 

and biomechanics [1]. Anatomy examines these structures and the relationships 

between them, physiology studies the functions of these structures, and 

biomechanics investigates these biological structures and their functions using 

classical mechanics perspective.  

Locomotion is a branch of voluntary movement. It is one of the essential functions 

of the body, and it is significant for all humans to perform daily activities. It is an 

ability or task that a person moves herself/himself from one place to another 

independently [2]. It includes lower limb movements like walking, running, and 

jumping. According to Cech and Martin [2], the primary requirements of locomotion 

are adequate dynamic balance to keep human posture stable, control and strength to 

continue locomotion and overcome the forces (e.g. gravity force).  

According to Andriacchi and Alexander [3], the intention of human locomotion 

studies changed over time. These studies are motivated by survival questions in the 

Paleolithic Era, wishing to understand harmony in the universe for Greek 

philosophers, define diseases and find treatments for our century [3]. Additionally, 

this analysis is not only used in clinical studies but also used in sports, robotics 

research and training [4]. These intentions lead scientists to develop analysis 

methods and devices and define parameters to study human locomotion, specifically 

human gait.  
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Gait analysis, a subbranch of biomechanics, examines human gait with the help of 

the science of classical mechanics. It consists of successive steps. The first step is 

that kinematic and kinetic data are obtained from a human during locomotion. In the 

following stages, measured data is applied to the biomechanical model, and 

computed parameters like joint angles, joint forces, and moments are used for 

clinical, robotic or sports research.  

During early times, gait analysis methods were semi-subjective and depended on the 

observation of clinicians. With the help of modern technology, more objective and 

quantitative devices and methods are available. Modern devices used in gait analysis 

can be classified into three groups: non-wearable sensor systems (NWS), wearable 

sensor systems (WS) and hybrid systems [5]. According to Muro-de-la-Herran et al. 

[5], NWS is located on the subject's arranged walkway, WS is located on the patient's 

body, and the hybrid systems use both NWS and WS. NWS systems are floor sensors 

and image processing-based sensors [5]. WS systems consist of diverse groups of 

sensors that include Inertial Measurement Units (IMUs), force sensors, goniometers, 

etc. The main difference between NWS and WS is that WS can be used outside the 

laboratory to track patients' daily-life routines. These sensory systems are examined 

in detail in Chapter 2. 

Normal human gait is characterized by gait parameters such as step length, joint 

angles, ground reaction forces, gait phases etc. Depending on the field of study, 

various parameters are selected to analyze gait. These parameters and the selection 

of the parameters are investigated in Chapter 2. 

 

1.1 Motivation and Scope of the Research 

Starting from Güler [6], many scientists have worked to improve the gait analysis 

system (KISS) at METU biomechanics laboratory, which is the first gait analysis 

system in Turkey that is constructed using of the shelf components. Güler 

constructed a biomechanical model, and he built marker and force plate setups for 
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kinematic and kinetic gait analysis, respectively [6]. In later studies, laboratory setup 

was advanced, used and compared with commercial systems by Shafiq [7], Karpat 

[8], Afşar [9], Söylemez [10], Civek [11], Kafalı [12], Erer [13] and Biçer [14]. Biçer 

also established a new kinematic gait analysis system which is the IMU-based system 

replacing the opto-electronic kinematic motion capture system [14]. This system 

consists of five IMU sensors and worked with Matlab, C++ and OpenSim programs. 

Additionally, OpenSim has been used not only for the kinematics but also for the 

kinetics part of the gait analysis. Despite the proof of the concept of the system, there 

are several issues that need to be improved in the gait analysis system. This thesis 

intends to investigate the following parts: 

In the first part of the study, OpenSim environment capabilities and software 

improvements are investigated. With the rapid development of IMUs, they are used 

more often in clinical studies. Gait analysis software, like OpenSim, have been 

updated to include IMU data input. OpenSim 3.3 was used for Biçer's thesis [14]. 

This version does not include the IMU plugin, but OpenSim 4.3 has it. It yields faster 

and easier to calculate results for gait analysis. Additionally, the accuracy and 

precision of kinetic data are directly related to kinematic data. So kinetic analysis is 

more reliable with the improvements in software. Moreover, OpenSim 4.3 allows 

animating the movement as a result of a more accurate analysis with IMUs. It is 

thought that animation will help researchers and clinicians to observe movements 

from different perspectives and identify diseases more precisely. 

The second part of the study examines system enhancements. IMU system in METU 

biomechanics laboratory consists of five IMU sensors; two placed at the proximal 

part of legs, two at the distal part of legs, and one at the pelvis. This setup was not 

receiving information from feet. Most of the clinical studies for lower extremities 

and gait analyses that worked with IMUs include seven IMUs placed at previously 

explained locations in addition to two feet, and analysis is more reliable when a 

system gets information from feet. 
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Thirdly, the kinetic analysis system with force plates was improved. Ground reaction 

force data were calibrated, coordinate system transformation was performed and sent 

as an input to OpenSim Inverse Dynamics Tool with movement data from OpenSim 

IMU Inverse Kinematics Setup. 

Additional to the lower extremity kinematic analysis system, the kinematic analysis 

system was developed for the human upper extremity. This system consists of seven 

IMU sensors placed at a subject's hands, proximal part of right and left arms, distal 

part of right and left arms and spine. 

In the last part of the thesis, experiments were conducted to test lower extremity and 

upper extremity kinematic analysis systems. Also, kinetic analysis of the lower 

extremity system was tested via experiments.  The system was validated qualitatively 

as a result of experiments.
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CHAPTER 2  

2 LITERATURE REVIEW 

Human movement analysis is a method that is frequently used in areas such as 

athletic performance, man-machine interfaces and games [15]. Especially it is widely 

used in the field of medical diagnostics, where a diagnosis can be made by comparing 

the kinematic and kinetic parameters of the patient with the data of a healthy 

individual.  

In this thesis, human motion analysis system is studied under two categories. These 

categories are kinematic and kinetic analyses. In order to understand kinematic and 

kinetic analyses, it is important and necessary to examine the movements that human 

limbs can perform and the forces and moments that cause or arise due to these 

movements.  

The movements that can be performed by the lower limb are presented in Figure 2.1 

[17]. The human pelvis can carry out tilt motion in the sagittal plane, oblique motion 

in the frontal plane and rotation in the transverse plane. The hip joint can perform 

abduction-adduction, flexion-extension and internal-external rotation. The knee joint 

can perform flexion-extension, varus-valgus and internal-external rotation 

movements. As for the ankle joint, it can perform plantarflexion-dorsiflexion, varus-

valgus and internal-external rotation movements.  
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Figure 2.1. (a) Hip joint, (b)knee joint, (c) ankle joint movements [17] 

Upper limb movements are presented in Figure 2.2 [18]. Flexion-extension in the 

sagittal plane, abduction-adduction in the frontal plane, medial-lateral rotation and 

horizontal flexion-extension in the transverse plane can be performed by the shoulder 

joint of a human. The elbow joint can carry out flexion-extension movements in the 

sagittal plane and pronation-supination movements in the transverse plane. 

Additionally, flexion-extension and abduction-adduction can be performed by the 

wrist joint of a human.  

 

 

Figure 2.2. Shoulder and elbow joints’ movements [18] 
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Upper and lower extremity movements are important for kinematic analysis. In 

kinematic analysis, analysis of motion is performed by examining measurements 

such as angle, angular velocity and acceleration of the related joints. In this thesis, 

kinematic analysis is computed for the upper and lower extremities separately. 

Although kinematic analysis of the lower extremity in the literature generally focuses 

on gait analysis, analysis of many different motions can be performed, especially 

with the development of out-of-laboratory systems [16].  

Kinetic analysis is the concept of analyzing the joints that perform motion in terms 

of force and moment. Ground reaction force (GRF) is a significant parameter for 

kinetic analysis, especially in terms of kinetic gait analysis. It can be used to calculate 

the moments of related joints. Also, GRF is used to interpret the state of irregularity 

of pathological gait and phases of normal gait [49]. The vertical ground reaction 

force graph in relation to gait phases for one gait cycle is presented in Figure 2.3 

[19]. 

 

Figure 2.3. Normalized vertical GRF [19] 

A typical gait cycle and gait phases are shared in Figure 2.4 [20]. In the stance 

phase, the foot is in contact with the ground. In the swing phase, the foot examined 
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during the gait cycle has no contact with the ground. Normal human locomotion is 

performed by repeating the gait cycle for two legs in sequence.  

 

Figure 2.4. Gait cycle phases [20] 

2.1 Kinematic Analysis 

2.1.1 Systems 

There are different systems that can be used to perform kinematic analysis. Among 

these systems, opto-electronic systems are classified as the gold-standard. It is 

known that the most widely used brand is VICON [21]. In these systems, active or 

passive makers are connected to anatomical landmarks on the subject's body, and the 

movement of the subject is monitored in this way. The drawbacks of opto-electronic 

systems are that adequate lighting is very crucial, it is not possible to work outside 

the laboratory, and a high sampling rate is required for fast movements [20]. 

The second method is Motion Capture Cameras. In these systems, movements are 

derived from sequences of photographs. The disadvantages of these systems are the 

same as the opto-electronic systems [20].  
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The third method is magnetic systems. Such systems do not depend on light, but 

operation is uncomfortable for the subject and it can be easily interfered by magnetic 

materials [20]. 

Alternatively, electro-goniometers can be used for gait analysis. The advantage of 

this system is that the output can be used directly for computation, but the use is 

uncomfortable for the subject, and the measurement quality for the lower limb is 

poor [20]. 

The last method is inertial systems. For these systems, Inertial Measurement Units 

are used. The sensors include a gyroscope, an accelerometer and a magnetometer. 

IMU sensors are cheap, lightweight and can be used out of a laboratory. The fact that 

these systems can be used out-of-laboratory is an advantage not only for gait analysis 

but also for tracking many daily life activities (e.g. rowing, stair climbing, cycling, 

etc.) [22]. The downsides of these systems are the limited battery life, computational 

complexity, and the possibility that the connected sensors may disturb the user [20]. 

In addition, it has been reported that drift problems are observed in this sensor type 

[21]. It has been stated that the drift problem can be observed especially in the 

horizontal axes of the gyroscope sensor [22]. 

2.1.2 Parameters 

The main aim of kinematic analysis is to obtain kinematic parameters. The obtained 

parameters are then used to compare subjects (e.g., healthy subjects and patients). 

The most widely used parameters for gait analysis are spatiotemporal parameters 

(e.g., step length, step time, stance phase, swing phase, stride length, stride time, 

cadence, velocity, step duration) and joint angular kinematics [23], [24].  

In this thesis, a system that computes joint angular kinematics has been studied, and 

the data in the literature has been examined in this context. Figure 2.5, from Fukuchi 

et al. [46], presents joint angular kinematics of twenty-four young adults (age 27.6 ± 

4.4 years) during walking. In these graphs, each curve represents a walking speed. 
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Light blue represents slow speed (30% less than preferred speed), and dark blue 

indicates fast speed (30% more than preferred speed). The dashed line is the users' 

preferred walking speed. 

 

 

Figure 2.5. Joint angular kinematics of twenty-four healthy young adults [46] 
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In order to obtain kinematic parameters such as joint angles, it is necessary to find 

the orientation of the segments connected by the joints. There are various methods 

to determine the attitude of these rigid bodies, and the most widely used approach is 

Euler angles. 

Euler Angles is a method used to find the rotation of a rigid body in three axes. Angle 

and the axis of rotation are defined in this method, and sequence is significant. The 

main disadvantages of this method are that Euler angles suffer from singularities, 

they depend on the order of rotation and when attitude over time is analyzed, they 

are less accurate than quaternions [14], [29]. Therefore, quaternions have been 

studied. Quaternions do not have singularity problems and are a successful method 

to represent angular velocity. The downside of the quaternions is that the four 

quaternion parameters have no physical meaning. Therefore, it is difficult to interpret 

quaternions. Also, it must be in unity norm to represent a rotation [29]. 

Usually, the analysis does not examine a single instantaneous rigid body attitude but 

rather monitors the changes of incremental variables over time. This is called real-

time attitude estimation of the rigid body. Generally, these systems use data from the 

previous time point to estimate the pose of the rigid body at the next time point. 

The most popular method used in the biomechanics field is the Kalman Filter. There 

are several different types of Kalman Filter, such as indirect Kalman filter (IKF), 

extended Kalman filter (EKF), unscented Kalman filter (UKF) [28]. IKF scheme 

uses the error state for this estimation; EKF linearizes the non-linear system with a 

truncated Taylor series expansion approach [28]. The UKF uses prior information 

for this computation [28]. Due to the complexity of these methods, new methods like 

Madgwick Algorithm [31] and Mahony algorithm [30] have been proposed. The 

Madgwick Algorithm, that is used in this thesis, is presented in detail in Section 3.4. 
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2.2 Kinetic Analysis 

2.2.1 Systems 

Sensors that measure force or pressure are used to perform kinetic analysis. The most 

widely used type of such systems are force platforms. To analyze gait, force 

platforms are placed on the subject's walkway, and the ground reaction force of the 

subject is calculated by measuring force and moment in three axes. Force platforms 

usually have load cells placed at each corner of two metal plates to measure the forces 

and moments in each axis [20]. The moments of the subject's joints are then 

calculated and compared to the joint moments of a healthy individual. The main 

drawback of such systems is that they require an expensive setup, and it is not 

possible to use them out of the laboratory [20]. 

Scientists have developed force shoes as a possible solution to the inability to use 

force platforms outside the laboratory. In this kind of system, force sensors are 

attached to the sole of the subject's shoes so that the user's gait can be monitored 

[20]. The main challenge of force shoes is that the unevenness of the surface leads 

to a decrease in measurement efficiency [20]. Moreover, the kinematic data of the 

subject is needed for accurate data processing [20]. 

Another option is to use pressure mats for kinetic analysis. Pressure mats have 

sensors positioned in a pad. They are inexpensive and portable. Nevertheless, a 

proper laboratory setup is required. Additionally, the scan rate decreases as the 

resolution increases [20]. 

2.2.2 Parameters 

The purpose of kinetic gait analysis is to obtain inter-personally comparable kinetic 

parameters. Examples of these kinetic parameters are vertical GRF, peak propulsion, 

peak braking, joint moments and joint powers [25], [26].  



 

 

13 

Figure 2.6 is presented to illustrate the use of vertical GRF to obtain joint moments 

[27]. For this case, the force vector is in front of the hip and ankle joints and behind 

the knee joint. In order to maintain balance, internal moments are required to 

compensate the external moments, and the internal moments are provided by the 

muscular system of the subject [27]. 

 

Figure 2.6. Vertical Ground Reaction Force [27] 

This thesis studies a kinetic gait analysis system that computes GRF and joint 

moments of the lower extremity. For this reason, data in the literature were 

investigated from this perspective. Figure 2.7, from Fukuchi et al., [46] is presented 

as an example of this data. Fukuchi et al. reported joint moments of twenty-four 

young adults walking at various speeds. A dashed line represents the speed at which 

the participants walked comfortably. The slow speed (-30% of comfortable velocity) 

is represented by a light blue line, and the high speed (+30% of comfortable velocity) 

is represented by a dark blue line. 
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Figure 2.7. Joint angular kinetics of twenty-four healthy young adults [46] 
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CHAPTER 3  

3 SOFTWARE OF MOTION ANALYSIS SYSTEM 

This thesis aims to build a motion analysis system for human upper and lower 

extremities.  

The primary purpose of the lower extremity motion analysis system is kinematic and 

kinetic gait analysis, whereas for the upper extremity system, it is just kinematic.  

The kinetic gait analysis system consists of force plates. By using these sensors, 

ground reaction forces (GRFs) are measured, coordinate systems of these force plates 

are transformed to OpenSim coordinate system and analysis is conducted by using 

OpenSim Inverse Dynamics Setup. As a result, the moments of each joint can be 

computed using kinematics and GRFs.  

The kinematic gait analysis system consists of seven IMU sensors placed in seven 

segments (pelvis, left and right thighs, shanks and feet) of the lower extremity of a 

human. By using these sensors, angular velocity, linear acceleration, and magnetic 

north can be measured. After data is collected, it should be filtered. By using 

Madgwick Algorithm [31], these filtered sensor data are fused to find the orientation 

of each sensor. Subsequently, coordinate systems of these sensors should be 

transformed to OpenSim frame (see Sections 3.1 and 3.5), and combined data from 

all the sensors are used by OpenSim to estimate angles of human lower limb joints 

during walking. 

On the other hand, the upper extremity motion analysis system includes only 

kinematic analysis. It utilizes the same procedure as the kinematic gait analysis 

system. The main difference is that IMU sensors should be attached to segments of 

the upper extremity of a human (torso, hands and proximal and distal parts of left 

and right arms). The output of this system is human upper extremity joint angles. 
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3.1 Coordinate Systems 

Commercial LSM9DS1 sensor was used for the kinematic analysis system. The 

sensors are approximately 60 g and have a size of 7 x 4.5 x 2.5 cm. Accelerometer, 

gyroscope and magnetometer reference frames are presented in Figure 3.1. 

Magnetometer and accelerometer reference frames are different, but gyroscope and 

accelerometer reference frames are the same. Additionally, gyroscope and 

accelerometer reference frames are left-handed reference frames, but the 

magnetometer frame is a right-handed coordinate frame. 

 

Figure 3.1. Sensor (LSM9DS1) coordinate frames 

On the other hand, OpenSim environment, which is used for kinematic analysis for 

this thesis, uses a coordinate system of X forward (red), Y up (green) and Z right 

(blue) [33]. This is the standard reference frame system for the OpenSim 

environment, as shown in Figure 3.2 [33]. Accelerometer frames of the used sensors 

are added to this figure. The North-East-Down (NED) reference frame is presented 

in this figure since Madgwick Algorithm uses NED as the earth reference frame. 
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Moreover, North-West-Up (NWU) reference frame is presented in Figure 3.2. It was 

found after single sensor experiments (in Chapter 4.2) that Madgwick Algorithm 

output is in NWU. 

Two coordinate frames transformations should be carried out for the kinematic 

analysis system. To give an example, coordinate frame transformations of the pelvis 

IMU sensor are presented in Table 3.1. 

The first transformation is the transformation of all IMU coordinate frames as NED 

to use data in the Madgwick Algorithm input. In Table 3.1, the information from the 

x-axis of the pelvis positioned magnetometer is written as the y-axis. This 

transformation is needed to give data as Madgwick Algorithm input. 

The second transformation is needed to use Madgwick Algorithm output in the 

OpenSim. In Table 3.1, y axis of the Madgwick Algorithm input is -y axis of the 

Madgwick Algorithm output. The second transformation is between the Madgwick 

Algorithm output and OpenSim frame. The OpenSim interface should be used for 

the second transformation, and it is defined as rotation about the x-axis as -pi/2. 
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Figure 3.2. Kinematic analysis related coordinate frames (reproduced from [33]) 

 

 

Table 3.1 Kinematic coordinate frame transformation table 

 

 

NED Earth 
Frame for 
Madgwick 
Algorithm 

input 

 
Pelvis 

Gyroscope/Accelerometer 
Axes 

 
Pelvis 

Magnetometer 
Axes 

NWU 
Earth 

Frame as 
Madgwick 
Algorithm 

output 

 
 

OpenSim 
Frame 

x -z -z x x 

y -x x -y -z 

z -y -y -z -y 
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In addition to the transformations of kinematic analysis system, force plate 

coordinate systems should be transformed to OpenSim World Frame. Force plate 

frames are presented in Figure 3.3. According to the walking direction, coordinate 

system transformations change. Frame transformation table related to direction is 

presented in Table 3.2. 

Table 3.2 Force Plate to OpenSim coordinate frame transformation table 

Direction 1 Direction 2 

OpenSim 
Frame 

Force Plate1 
Frame 

Force Plate2 
Frame 

OpenSim 
Frame 

Force Plate1 
Frame 

Force Plate2 
Frame 

X -Y Y X Y -Y 

Y Z Z Y Z Z 

Z X -X Z -X X 

 

 

 

 

Figure 3.3. Force plate reference frames 
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3.2 Data from IMU Sensors and Force Plates 

The gait analysis system for lower extremity consists of two parts: kinematic and 

kinetic gait analysis. The kinematic analysis output directly affects the kinetic 

analysis results, and it is important for the OpenSim input that both data types 

coincide with the same phases of the walk for kinetic gait analysis. Therefore, it is 

essential to receive synchronized data from the relevant sensors. The program 

developed by AdaSoft was used to receive synchronized data simultaneously. The 

program interface is presented in Figure 3.4. 

 

 

Figure 3.4. IMU and Force Plate Dumper Interface 

After connecting the force plate and IMU receivers, the interface lets IMU sensors 

synchronize. Subsequently, data acquisition can be started by clicking the save 

button. It is necessary to press the button again to stop recording. 

On the other hand, this interface cannot be used for the upper extremity motion 

analysis system since it does not include only IMU sensors. Therefore, the Tera Term 

interface can be used to collect data from IMU sensors. The program interface and 
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settings are presented in Figure 3.5. By pressing button 9 on keyboard, IMU sensors 

can be synchronized; after then, button 1 can be used to start recording, and 0 is used 

to stop recording.  

 

 

Figure 3.5. Tera Term Interface 

3.3 Preprocessing Data 

Recorded data from IMU sensors is presented in Figure 3.6. The first row includes 

the timestamp, sensor number, gyroscope data with related axis (abbreviated as GX, 

GY, GZ), accelerometer data with related axis (abbreviated as AX, AY, AZ), 

magnetometer data with related axis (abbreviated as MX, MY, MZ). As seen in 

Figure 3.6, the sensor data is recorded in a mixed manner. Therefore, the first step is 

grouping the data using sensor index with the help of a Matlab code. The data count 

is then equalized so that each sensor's first and last data indices are the same. Finally, 

the first five thousand data are written as the average of the first one hundred data of 

gyroscope, accelerometer and magnetometer measurements to find the orientation of 
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the sensors with respect to the world reference frame. .txt format is used for the files. 

After the final preprocessing, the data is ready to be used in the Madgwick 

Algorithm.  

The codes written for the pre-processing of the data were originally developed within 

the scope of this thesis and are presented in Appendix C. 

 

 

Figure 3.6. IMU recorded data file 

3.4 Madgwick Algorithm 

According to Madgwick [31], IMU data have a high level of noise; therefore, data 

from three different types of sensors (accelerometer, magnetometer, gyroscope) 

should not be used separately [31]. To determine the orientation of the body in the 

World frame accurately, the data from all sensors should be combined. The 

combination can be achieved by a fusion algorithm. Several different fusion 

algorithms can be applied to IMU sensor data, and Madgwick Algorithm is one of 

them. Sebastian O.H. Madgwick proposed this algorithm in 2010, and he proposed 
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this method to be worked with the IMU sensors [31]. Normally, Kalman Filter is the 

most popular method used in biomechanics, but due to the complexity of this 

method, the Madgwick Algorithm is used. Also, Madgwick Algorithm has better 

accuracy levels when compared to the Kalman-based algorithm [31].  

To understand Madgwick Algortihm, coordinate frames, notation and algorithm 

steps are explained in this section, respectively. 

Firstly, the most common coordinate frames used in this type of algorithm are sensor 

frame and earth frame. Sensor frame is the frame that moves with the sensor. 

Typically sensor is attached to the related body, so it is also known as the body frame. 

The other frame is the earth frame, which is fixed on Earth and does not move.  

The second significant part of understanding the algorithm is related to notation. Pre-

subscript defines the source coordinate frame, and pre-superscript defines the 

destination coordinate frame [32]. As an example 𝑞𝑆
𝐸  describes the orientation of 

sensor frame (S) relative to earth frame (E). Also, it is the orientation of the body or 

sensor in the form of a quaternion [32]. In the case of only pre-superscript being 

defined, the parameter was measured and represented in the same frame [32]. 

Madgwick Algorithm has two crucial steps. The first one depends on gyroscope 

measurements, and the second one is related to accelerometer and magnetometer 

measurements.  

The major equations of the Madgwick Filter related to gyroscope measurements are 

presented as [32]. 

                                           𝑤 
𝑠 = [0 𝑤𝑥 𝑤𝑦 𝑤𝑧]                                          (3.1) 

                                            �̇�𝑤,𝑡𝐸
𝑆 =

1

2
�̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆  ⨂ 𝑤𝑡 

𝑠                                         (3.2) 

                                           𝑞𝑤,𝑡𝐸
𝑆 = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 + �̇�𝑤,𝑡𝐸
𝑆 ∆𝑡                                      (3.3) 

                                            𝜇𝑡 = 𝛼‖ �̇�𝑤,𝑡𝐸
𝑆 ‖∆𝑡   𝛼 > 1                                         (3.4)       



 

 

24 

The general vector for angular velocity measurements can be seen in Equation (3.2). 

In this equation, angular velocity vector (includes gyroscope measurements on 

sensor frame at time t) is denoted as 𝑤𝑡 
𝑠 . �̇�𝑤,𝑡𝐸

𝑆 , the quaternion derivative, describes 

the rate of orientation change at time t. �̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆  is the estimated orientation at the 

previous time point, ∆t is the sampling period, 𝜇𝑡 is the step size at time t and α is 

the augmentation of 𝜇  because of the noise of magnetometer and accelerometer 

sensors. 𝑞𝑤,𝑡𝐸
𝑆  defines the orientation of the earth frame relative to the sensor frame 

at time t by using previous orientation estimation and gyroscope measurements. 

The second part includes equations related to accelerometer and magnetometer 

measurements. These measurements are substituted into Gradient Descent 

Algorithm. The final accelerometer (from Equation(3.5) to Equation (3.7)) and 

magnetometer equations (from Equation(3.8) to Equation (3.11)) were solved 

separately and combined with each other by using Equations (3.12) and (3.13). 

                                        �̂�  
𝑆 = [0 𝑎𝑥 𝑎𝑦 𝑎𝑧]                                               (3.5) 

                         𝑓𝑔( �̂� ,𝐸
𝑆  �̂�  

𝑆 ) = [

2(𝑞2𝑞4 − 𝑞1𝑞3) − 𝑎𝑥
2(𝑞1𝑞2 − 𝑞3𝑞4) − 𝑎𝑦

2 (
1

2
− 𝑞2

2 − 𝑞3
2) − 𝑎𝑧

]                                       (3.6) 

                        𝐽𝑔( �̂� 𝐸
𝑆 ) = [

−2𝑞3 2𝑞4 −2𝑞1
2𝑞2 2𝑞1 2𝑞4
0 −4𝑞2 −4𝑞3

    
2𝑞2
2𝑞3
0
]                                     (3.7) 

                                      �̂�  
𝐸 = [0 𝑏𝑥 0 𝑏𝑧]                                                   (3.8) 

                                    �̂�  
𝑆 = [0 𝑚𝑥

𝑚𝑦 𝑚𝑧]                                              (3.9) 

𝑓𝑏( �̂� ,𝐸
𝑆  �̂�  

𝐸 , �̂�  
𝑆 ) = [

2𝑏𝑥(0.5 − 𝑞3
2 − 𝑞4

2) + 2𝑏𝑧(𝑞2𝑞4 − 𝑞1𝑞3) − 𝑚𝑥

2𝑏𝑥(𝑞2𝑞3 − 𝑞1𝑞4) + 2𝑏𝑧(𝑞1𝑞2 − 𝑞3𝑞4) − 𝑚𝑦

2𝑏𝑥(𝑞1𝑞3 − 𝑞2𝑞4) + 2𝑏𝑧(0.5 − 𝑞2
2 − 𝑞3

2) − 𝑚𝑧

]            (3.10) 
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 𝐽𝑏( �̂� , �̂�  
𝐸

𝐸
𝑆 ) =

[

−2𝑏𝑧𝑞3 2𝑏𝑧𝑞4 −4𝑏𝑥𝑞3 − 2𝑏𝑧𝑞1
−2𝑏𝑥𝑞4 + 2𝑏𝑧𝑞2 2𝑏𝑥𝑞3 + 2𝑏𝑧𝑞1 2𝑏𝑥𝑞2 + 2𝑏𝑧𝑞4

2𝑏𝑥𝑞3 2𝑏𝑥𝑞4 − 4𝑏𝑧𝑞2 2𝑏𝑥𝑞1 − 4𝑏𝑧𝑞3

    

−4𝑏𝑥𝑞4 + 2𝑏𝑧𝑞2
−2𝑏𝑥𝑞1 + 2𝑏𝑧𝑞3

2𝑏𝑥𝑞2

]  (3.11) 

                     𝑓𝑔,𝑏( �̂� ,𝐸
𝑆  �̂� , �̂�  

𝐸 , �̂�  
𝑆

 
𝑆 ) = [

𝑓𝑔( �̂� ,𝐸
𝑆  �̂�  

𝑆 )

𝑓𝑏( �̂� ,𝐸
𝑆  �̂�  

𝐸 , �̂�  
𝑆 )

]                                 (3.12) 

                                 𝐽𝑔,𝑏( �̂� , �̂�  
𝐸

𝐸
𝑆 ) = [

𝐽𝑔
𝑇( �̂� 𝐸

𝑆 )

𝐽𝑏
𝑇( �̂� , �̂�  

𝐸
𝐸
𝑆 )

]                                           (3.13) 

Angular velocity ( 𝑤𝑡 
𝑆 ) from the gyroscope, linear acceleration ( �̂�𝑡 

𝑆 ) from the 

accelerometer, magnetic direction and strength ( �̂�𝑡 
𝑆 ) from magnetometer at time t 

and Earth's magnetic field in earth frame ( �̂�  
𝐸 ) are defined in these equations. 

Superscript s indicates that these vectors are described in the sensor frame. Vector 

representation of the sensor data can be seen in Equations (3.1), (3.5) and (3.9). 

𝑞∇,𝑡𝐸
𝑆  defines the orientation of the earth frame relative to the sensor frame at time t 

by using previous orientation estimation and magnetometer and accelerometer 

measurements. ∇ means that the related quaternion is calculated by using the gradient 

descent algorithm. 

                                  𝑞∇,𝑡𝐸
𝑆 = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 + 𝜇𝑡
∇𝑓

‖∇𝑓‖
                                               (3.14) 

          ∇𝑓 = {
𝐽𝑔
𝑇( �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 )𝑓𝑔( �̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆 , �̂� 𝑡 

𝑆 )

 𝐽𝑔,𝑏
𝑇 ( �̂�𝑒𝑠𝑡,𝑡−1, �̂�  

𝐸
𝐸
𝑆 )𝑓𝑔,𝑏( �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 , �̂� , �̂�  
𝐸 , �̂�  

𝑆
 
𝑆 )

                            (3.15) 

As mentioned earlier, Eqs. (3.3) and (3.14) are the main equations to estimate 

orientation at time t. Equation (3.3) depends on the angular rate and Eq. (3.14) 

depends on accelerometer and magnetometer measurements. After fusing these 

equations, Madgwick calculated "filter fusion algorithm equations" that are 

presented Eqs. (3.16), (3.17) and (3.18). β is the magnitude of gyroscope 

measurement error. It can be calculated by multiplying mean zero gyroscope 

measurement error by √3/4. 
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                              𝑞𝑒𝑠𝑡,𝑡𝐸
𝑆 = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆 + �̇�𝑒𝑠𝑡,𝑡𝐸
𝑆 ∆𝑡                                             (3.16) 

                                 �̇�𝑒𝑠𝑡,𝑡𝐸
𝑆 = �̇�𝑤,𝑡𝐸

𝑆 − 𝛽 �̇̂�𝜖,𝑡𝐸
𝑆                                                     (3.17) 

                                        �̇̂�𝜖,𝑡 =𝐸
𝑆 ∇𝑓

‖∇𝑓‖
                                                                (3.18) 

The block diagram of Madgwick Algorithm is presented in Figure 3.7. The equations 

presented do not include magnetic distortion (Group 1) and gyroscope drift 

compensation (Group 2) in Figure 3.7. These corrections can be used to get more 

accurate estimations about IMUs' orientation. 

 

Figure 3.7. Complete block diagram of Madgwick Algorithm [31] 

Group 1, in Figure 3.7 represents the magnetic distortion compensation of the 

magnetometer. Moreover, the need for the reference direction of the Earth can be 

eliminated by using Group 1 in the algorithm. This compensation can be achieved 

with the calculation of the reference direction of Earth's magnetic field ( �̂�𝑡 
𝐸 ) by 

using the measured direction of Earth's magnetic field with the help of magnetometer 

( ℎ̂𝑡 
𝐸 ). Eqs. (3.19) and (3.20) can be used for this compensation [31]. 
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              ℎ̂𝑡 
𝐸 = [0 ℎ𝑥 ℎ𝑦 ℎ𝑧] = �̂�𝑒𝑠𝑡,𝑡−1𝐸

𝑆  ⨂ �̂�𝑡 
𝑠 ⨂ �̂�𝑒𝑠𝑡,𝑡−1

∗
𝐸
𝑆                     (3.19) 

                               �̂�𝑡 
𝐸 = [0 √ℎ𝑥2 + ℎ𝑦2 0 ℎ𝑧]                                           (3.20) 

3.5 OpenSim Program 

OpenSim is an open source software package that can be used to analyze and 

simulate movement with the help of models of musculoskeletal structures. It has 

different modules for kinematic and kinetic analyses. OpenSim 4.3 version was used 

for this study. After OpenSim 4.1 version OpenSense software was released which 

was able to use IMU data for kinematic analysis.  

The main reasons for using OpenSim are that it provides a fast tool for kinetic and 

kinematic analysis with the help of manipulable models and IMU plugins and allows 

animating the motion. 

The main window of OpenSim is presented in Fig. 3.8. By using the main window, 

models and motions can be visualized, and by using OpenSim Tools, analysis can be 

performed. 

 

Figure 3.8. OpenSim Main Window 
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Analysis can be performed after opening a model. There are different 

musculoskeletal models developed for OpenSim. All released models are shared on 

OpenSim official website [48]. With the help of the Matlab Scripting Environment, 

conducting the analysis with Matlab is possible. In the further sections, OpenSim 

Tools, which are IMU Placer Tool, IMU Inverse Kinematics Tool and Inverse 

Dynamics Tool, are explained. 

3.5.1 IMU Placer Tool 

Firstly, an OpenSim model must be loaded in the OpenSim program. The Rajagopal 

model was used for this study. After the model is loaded, the IMU sensors are 

positioned on the model; thus, the model is calibrated.  

Sensors positioned on the subject should be in approximately the same positions as 

the sensors positioned on the model, and the sensor axes should be as parallel as 

possible to the human anatomical planes.  

The interface and adjustments of the tool are presented in Figure 3.9. 

 

Figure 3.9. OpenSim IMU Placer Tool 
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This procedure can also be implemented through Matlab. Matlab code is presented 

in Figure 3.10. 

 

Figure 3.10. Matlab code for OpenSim IMU Placer 

3.5.2 IMU Inverse Kinematics Tool 

Opensim Inverse Kinematics (IK) Tool is the interface where kinematic analysis is 

performed. This interface is presented in Figure 3.11. 

 

 

Figure 3.11. OpenSim IK Tool 
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As input to this tool, the sensor data should be provided together with the information 

of which sensor it belongs to. The input data, "mlab.sto", is presented in Figure 3.12 

for the lower extremity and Figure 3.13 for the upper extremity. The first five rows 

of this document contain the information that must be supplied to OpenSim, and the 

sixth row includes time and the sensor names defined in OpenSim. The following 

rows contain sensor orientation data in the form of quaternion. The output of this 

tool is the subject's joint angles. 

 

 

Figure 3.12. Lower extremity input data for OpenSim IK Tool 

 

Figure 3.13. Upper extremity input data for OpenSim IK Tool 

This procedure can also be implemented through Matlab. Matlab codes are presented 

in Figure 3.14. 
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Figure 3.14. Matlab code for OpenSim IK Tool 

3.5.3 Inverse Dynamics Setup 

Opensim Inverse Dynamics (ID) Tool is the interface where kinetic analysis is 

performed. This interface is presented in Figure 3.15. 

 

 

Figure 3.15. OpenSim ID Tool 

Joint angles previously computed by the IK tool and Ground Reaction Forces (GRFs) 

measured by force platforms are input to this tool. Output is the joint moments of the 

subject. 
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3.5.4 Animation of the Motion 

Kinematic and kinetic data performed by the subject can be animated by using the 

OpenSim interface or Matlab. As presented in Figure 3.16, GRF can be visualized 

by associating the GRF data with OpenSim ID Tool.  

 

 

Figure 3.16. Visualizing Ground Reaction Forces 

3.6 Interpretation of Code 

3.6.1 Code for Kinematic Analysis System 

The block diagram of the kinematic analysis system is presented in Figure 3.17. This 

system consists of two parts; on Matlab and OpenSim. The Matlab Part starts with 

data acquisition from the IMU sensors and ends with the generation of "mlab.sto" 

file. All the code used in this part work with the Matlab program (.m file), and the 

main code is TestCpp. This code ensures that the data from IMU sensors is read; 

directed to the relevant Codegens, and the resulting data, which is "mlab.sto", is 
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generated. This file includes information about sensor orientations as quaternions 

with related segment names. 

Matrices code separates the sensor data according to sensor indexes and directs them 

to the corresponding Calculation code. Calculation1 is for the pelvis sensor, 

Calculation2 is for right distal and proximal leg sensors, Calculation 3 is for the left 

distal and proximal leg sensors, and Calculation4 is for the foot sensors. Calculation 

code align the sensor axes to the NED reference frame. Then data is filtered. After 

the filtering process, the orientation of the sensor frame relative to the World 

Reference Frame is computed as a quaternion with the help of the AHRSAlgorithm 

and the first five thousand data point of motion data. AHRSAlgorithm contains 

Madgwick Algorithm. By using the measured quaternion as an input to the 

AHRSalgorithm code, the rest of the motion data is transferred through the 

AHRSalgorithm code again, and the "mlab.sto" file is generated. This file contains 

orientation of each sensor with related bodies defined in OpenSim. The file is then 

used in OpenSim program for IMU Placer, and IMU IK tool, respectively. As a 

result, ''ik_Subject1_orientations.mot'' file is generated that contains the subject's 

joint angles. 
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Figure 3.17. Block diagram of the kinematic analysis system 

The same procedure is applied for both upper and lower extremity kinematic analysis 

systems. The main difference is in Calculation codes for the upper extremity motion 

analysis system, Calculation1 is for the torso sensor, Calculation2 is for right 

proximal and distal arm sensors, Calculation 3 is for left proximal and distal arm 

sensors, and Calculation4 is for the hand sensors. 

The developed codes are TestCpp, Matrices and Calculations1, Calculations2, 

Calculations3, and Calculations4. The codes that make calculations based on 

quaternions (for lower extremity) are presented in Appendix D, the codes that make 

calculations based on Euler angles (for lower extremity) are presented in Appendix 

E, and the codes developed for the upper extremity kinematic analysis are presented 

in Appendix F. 
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3.6.2 Code for Kinetic Analysis System 

The block diagram of the kinetic analysis system is presented in Figure 3.18. The 

developed codes are grfmot.m codes for two different walking directions. These 

codes are presented in Appendix G. 

 

Figure 3.18. Block diagram of the kinetic analysis system 

There are two phases in kinetic analysis. In the first phase, the data obtained from 

the force platform is calibrated to obtain moment and force data from the sensor 

electrical outputs. Calibration Matrix C1 for Force Plate 1, and Calibration Matrix 

C2 for Force Plate 2 are used. The mathematical expression of the calibration process 

is given in Eq. 3.23. In this equation, S is unamplified sensor outputs, C is calibration 

matrix, F is force in Newtons, and M is moment in Newton.meters. Therefore, 

amplified force plate outputs should be divided by 10 for the z-axis of the force plate 

to calculate the unamplified force of the z-axis and should be divided by 20 for all 

others to compute unamplified outputs.  
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Secondly, the calculation of point of application of force is carried out by using Eqs. 

3.24 and 3.25. The application points, relative to the center of the force platform, are 

x and y, and h is the thickness of the force plate h is accepted as 0,005 m. 

                                      𝑥 = (−ℎ. 𝐹𝑥 −𝑀𝑦)/𝐹𝑧                                                 (3.24) 

                                      𝑦 = (−ℎ. 𝐹𝑦 +𝑀𝑥)/𝐹𝑧                                                 (3.25) 

 

After these processes, force plates' coordinate frames are transformed to the 

OpenSim reference frame; thus "grf.mot" file is generated. This file is given as input 

to the ID Tool with the IK results. As a result, "inverse_dynamics.sto" file is 

generated, which contains the moments of the subject's joints. 
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CHAPTER 4  

4 EXPERIMENTAL SETUP AND DATA ANALYSIS 

4.1 Problems of IMU System 

Before evaluating the system together with seven sensors, individual sensors were 

examined. Three problems were identified which are about unit transformation, 

magnetometer calibration and sensor drift. 

Firstly, as mentioned before, IMU sensors consist of three main sensors. These 

sensors can be used separately or combined. Fused data from all three sensors were 

used to get accurate orientation for this system. However, before combining the 

sensor data,  unit transformations should be applied to LSM9DS1 sensor outputs (for 

all three sensors) to correct the output units.  

Sensitivity is used to get the correct units for gyroscope and magnetometer outputs. 

The sensitivity values of the gyroscope and magnetometer are presented in Table 4.1 

[34]. According to this table, gyroscope and magnetometer outputs should be 

multiplied by 8.75/1000 dps/LSB and 0.29/1000 gauss/LSB, respectively, before 

these outputs can be used in Madgwick Algorithm. 
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Table 4.1 Sensitivity Values 

 

Moreover, the sensitivity value of the accelerometer is presented in Table 4.1  

According to the data sheet of LSM9DS1, accelerometer outputs should be 

multiplied by 0.061/1000 g/LSB. This information has been verified by series of 

experiments. 

In these experiments, the calibration constant of the accelerometer is determined by 

using gravitational acceleration. Sensors were placed at configurations that are 

presented in Figure 4.1, Figure 4.2 and Figure 4.3, respectively, and data was 

collected when sensors were standing still. The data from accelerometer axes (that 

have gravitational effects) of all seven sensors at each configuration were used to 

find the calibration constant. The mean and standard deviation of the measurements 

are 16340 LSB/g (0.0612 mg/LSB) and 373 LSB/g, respectively. So, all 

accelerometer data should be divided to 16340 to get 1 g for Madgwick input. 
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Figure 4.1. Sensor configuration such that gravitational effect on the z-axis 

 

Figure 4.2. Sensor configuration such that gravitational effect on the x-axis 

 

Figure 4.3. Sensor configuration such that gravitational effect on the y-axis 
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The second problem is magnetometer calibration. Because of the magnetic 

interference, erroneous heading estimates from the magnetometer might be obtained 

[36]. A magnetometer calibration process is challenging since whenever the 

magnetometer is placed at a new place, it should be recalibrated [37]. Therefore, 

Madgwick Distortion Compensation was used to overcome this problem which is 

explained in Section 3.4. 

The last problem is gyroscope drift. It is a frequent problem for IMU studies, and the 

Butterworth filter can be used to remove noise from raw data and correct the 

gyroscope drift [38], [39]. 6th-order lowpass Butterworth filter with a cut-off 

frequency of 6 Hz was used for this system for data sampled at 100 Hz [14]. 

All the problems of the IMU sensors are retested by static experimental setups, 

namely single sensor experiments, multiple sensor experiments on mechanical test 

equipment and also on subject experiments. 

4.2 Single Sensor Motion Analysis  

Before assessing all sensors, one sensor's orientation was tested by conducting a 

series of experiments. All different orientations of the sensors (foot, right and left 

legs and pelvis placement) were evaluated separately. The initial orientation of the 

foot sensors is presented in Figure 4.4. The related sensor is rotated around a single 

axis (x, y, z) at different pre-defined angles (±30, ±45, ±60, ±90) in these experiments 

and readings were tested. 

 

Figure 4.4. Experimental setup for single sensor motion analysis 
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Before using sensor output in the Madgwick Algorithm, axes of the sensor are 

arranged in North-East-Down (NED) order. For example, the y-axis for the foot 

placement orientation shown in Figure 4.4 was changed to x, x changed to -y, and z 

changed to -z. After using this data as an input of the Madgwick Algorithm, there 

are two options to reset the initial orientations of the sensors. The resetting process 

is the alignment of the initial sensor frame to the Earth reference frame. It can be 

reset by using Euler angles, then converted to quaternion or reset directly as a 

quaternion. Both options have been evaluated in this thesis.  

The first option is using the Madgwick Algorithm output as Euler Angles to reset the 

initial orientation before changing into a quaternion. The steps of the right leg sensor 

processes are presented in Figure 4.5 and Figure 4.6. The raw output of the 

Madgwick Algorithm as Euler Angles is presented in Figure 4.5; it can be seen that 

the angle switches +180 degrees after it passes to -180 degrees. Hence, the first 

correction is the correction of the shift, and the result of this process is presented in 

Figure 4.6. The second step is the resetting of the initial orientation of the sensor by 

using the first twenty data points, and the final result after operations is presented in 

Figure 4.7. 

 

Figure 4.5. The first output of the right leg sensor 
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Figure 4.6. Angle correction of the right leg sensor 

 

 

Figure 4.7. Offset correction of the right leg sensor 
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The same procedures for the Euler Angle option and the result for the left leg sensor 

are presented in Figure 4.8, Figure 4.9 and Figure 4.10, respectively. 

 

Figure 4.8. The first output of the left leg sensor 

 

Figure 4.9. Angle correction of the left leg sensor 
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Figure 4.10. Offset correction of the left leg sensor 

Results of the foot sensor rotated around the +x axis at +60 degrees, +y axis at +45 

degrees, and +z axis at -30 degrees are presented below. 

 

Figure 4.11. Foot sensor rotated around +x axes at +60 degrees 
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Figure 4.12. Foot sensor rotated around +y axes at +45 degrees 

 

Figure 4.13. Foot sensor rotated around +z axes at -30 degrees 

Additionally, the first experimental results with Euler Angles showed that in the case 

of NED ordered input, Madgwick Algorithm sensor outputs are in North-West-Up 

(NWU) order. Therefore, before using the data for OpenSim, the rotation of NWU 

ordered IMU data to the OpenSim world frame is defined as -pi/2 rad around x-axes. 

The second option is using the Madgwick Algorithm output directly as quaternion to 

reset the initial orientation. Equation 4.1 is used to reset the orientation [35]. �̆�𝑓 is 

the main quaternion data that includes examined movement, �̆�𝑚 is the quaternion 

data of the initial orientation of the sensor, and * is the quaternion product. 
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                                                   �̆� = �̆�𝑓 ∗ �̆�𝑚                                                       (4.1) 

After this step, all the sensor placement orientations were evaluated for each axis and 

frames were arranged in North-West-Up order. The second option was chosen 

because of Euler Angles' gimbal lock problem. 

4.3 Multiple Sensor Motion Analysis with Mechanical Test Equipment 

There are seven sensors placed on a human in our analysis setup. Two sensors are 

placed on the right and left feet, two at distal part of right and left legs, two at 

proximal part of right and left legs, and one at the pelvis of a human for the lower 

extremity analysis system. For the upper extremity analysis system, two sensors are 

placed on the right and left hands, two at distal part of right and left arms, two at 

proximal part of right and left arms, and one at the torso of a human. When these 

sensors are placed on human limbs, a couple of problems might affect the signal.  

The first thing that may disturb the signal is noise. Butterworth filter is one of the 

most used filters in the literature for preprocessing the IMU data in human 

biomechanics [40], [41]. Low pass Butterworth filter with 6th order 6 Hz cut-off 

frequency was used for the system to remove noise [14]. 

Secondly, the OpenSim world frame is different from the Madgwick Algorithm 

World frame. Therefore, it should be transformed by using the sensor to OpenSim 

rotations. As mentioned in the previous chapters, the sensor frame orientations are 

transformed in NED order before using in Madgwick Algorithm, and the output of 

Madgwick Algorithm is defined in NWU order. So, sensor to OpenSim rotation is 

defined as -pi/2 at x-axes. Section 3.1 explains this transformation process.  

Additionally, the initial positions of the IMU sensors are important. OpenSim model 

must be calibrated before processing the movement data. In the calibration process, 

initial positions of the IMU frames are found by using OpenSim model body 

segments and IMU calibration data. The calibration pose of the model was chosen 

as the default pose, which is all the joints of the model at neutral. Neutral pose is 
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presented in Figure 4.14. The subject should stand in the same pose as the neutral 

pose when data acquisition is started. 

 

Figure 4.14. Neutral pose of the Rajagopal model 

The last effect is the precision of the sensors and human movement. The sensors are 

LSM9DS1 by SparkFun. This sensor type was chosen because of the low price, but 

it has slightly worse accuracy (compared to the majority of sensors used in this field) 

since it is linear acceleration typical zero-g level offset accuracy is ±90 mg, zero-

gauss level is ±1 gauss and angular rate typical zero-rate level ±30 dps [34], [42]. 

Additionally, the electronic circuit and embedded communication systems of the 

sensors are custom-made. So, the accuracy of the overall system was not known. 

In the Section 4.1, the individual sensor problems and solutions are presented, but 

the overall system tests were needed to assess the related problems above. This need 

led to design and manufacture passive mechanical system to assess multiple sensors 

with known angles. 
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4.3.1 Design of Mechanical System 

Before designing the mechanical system, literature was searched to decide the 

dimensions. Rajagopal_2016 model was used as a biomechanical model [43]. 

Rajagopal et al. used a 170 cm tall, 75 kg male model's bony geometry and 

dimensions [43], [44]. The exact dimensions were scaled and used to design a 

mechanical model. The reason for scaling is to use less material. The scale of the 

designed equipment to anthropometric data is 0,72. IMU sensor dimensions were 

considered to decide on the scale.  

The designed model has six joints, two at the hip, two at the knee, two at the ankle, 

and four DOF at each joint. The fourth DOF is caused by the design of the standard 

parts. Standard parts were designed for joints because it was thought that rather than 

changing the femur part, changing a relatively smaller standard part is more efficient.  

Designed test equipment is presented in Figure 4.15. 

 

Figure 4.15. Mechanical test equipment 



 

 

49 

Part 1, Part 2, Part 7 and Part 8 are the standard parts of the system. Joints of the 

system consist of these parts. Part 3 is a model of the pelvis. The pelvis sensor is 

attached to Part 3. Part 4, Part 5 and Part 6 are femur, tibia and foot parts, 

respectively, where the related IMU sensors bind to these parts with the correct 

orientation. Technical drawings are available at Appendix A. 

4.3.2 Manufacturing of Mechanical System 

The designed passive human lower extremity model was manufactured at METU 

Mechanical Engineering Machine Shop. CNC milling machine and lathe were used 

for the manufacturing. 

Polyoxymethylene (trade name Delrin®) was used to manufacture mechanical test 

equipment. The reason Delrin® is preferred for this system is that it does not have an 

effect on the magnetometer. Also, it has dimensional stability and high strength when 

compared to other material options for this system [45]. 

The manufactured mechanical system is presented in Figure 4.16. 

 

Figure 4.16. Manufactured test equipment 
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4.3.3 Multi-Sensor Experiments Results for Lower Extremity 

Multi-sensor experiments were performed using seven sensors. The sensors are 

positioned on both feet, two tibias, two femurs, and the pelvis of the mechanical test 

equipment. Positioning is presented in Figure 4.17. 

 

Figure 4.17. Sensor Positions 

Data was collected by calibrating the sensors to receive data simultaneously, all the 

sensor axes were arranged in NWU order, and joint angles were obtained using the 

Madgwick Algorithm and OpenSim Inverse Kinematics module. Detailed 

information about Madgwick Algorithm and OpenSim IMU Placer Tool, and 

OpenSim IMU Inverse Kinematics module can be found in Section 3.5.1 and Section 

3.5.2, respectively. 

There were a couple of experiments conducted in this part. Firstly, right and left 

ankle joints move separately in the direction of dorsiflexion-plantar flexion, 

abduction-adduction, and inversion-eversion at approximately 30, 45, 60, 90 
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degrees. In the second group experiments, just about 30, 45, 60, and 90 degrees of 

flexion-extension, abduction-adduction, and internal-external rotation movements 

were carried out separately at the right and left knee joints. Third group experiments 

include around 30, 45, 60, and 90 degrees of flexion-extension, abduction-adduction, 

and internal-external rotation movements at right and left hip joints. Lastly, the 

overall model was turned right and left. Then, as a result of the analysis, it was 

examined whether the joint angles performed in the experiment were obtained as a 

result of the analysis. 

As a part of this thesis, two experimental results are examined deeper, which are 30 

degrees knee flexion-extension and 30 degrees hip adduction-abduction. The knee 

flexion-extension experiment is presented in Figure 4.18, and the hip adduction-

abduction experiment is presented in Figure 4.19. 

 

Figure 4.18. Knee flexion-extension experiment 
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Figure 4.19. Hip adduction-abduction experiment 

 

Rajagopal_2015 model is used in OpenSim. OpenSim IMU Placer Tool and IMU IK 

Tool adjustments for the right knee 30-degree experiment can be seen in Figures 4.20 

and 4.21. 
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Figure 4.20. OpenSim IMU Placer Tool adjustment 

 

 

Figure 4.21. OpenSim IMU IK adjustment 
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The test results are presented below. 

 

Figure 4.22. Right knee flexion-extension experiment results 

 

Figure 4.23. Right hip adduction-abduction experiment results 
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In these experiments, although there was isolated motion in one joint of the 

mechanical test equipment, the motion was also observed in the other joints of the 

related limb (in this case right leg). This is because these joints are interconnected 

with the muscle models in the OpenSim model. Also, Rajagopal model has restrictive 

motion since it only allows pelvic rotation, pelvic tilt, pelvic list, hip rotation, hip 

adduction, hip flexion, knee flexion, ankle inversion, ankle dorsiflexion and toe 

flexion [43]. As an example of the non-isolated motion, in Figure 4.22, flexion was 

observed in the right hip joint since the Rajagopal biomechanical model does not 

allow some movements (e.g. hyperextension at knee joint), it performs other allowed 

movements when there is data from the sensors for this movement. 

4.3.4 Multi-Sensor Experiments Results for Upper Extremity  

The experiments were performed using seven sensors. Mechanical test equipment 

was used for these tests. Mechanical testing equipment was designed for lower 

extremity experiments. However, since the angles and related joint movements are 

the same, it was used in these experiments by making all the joints of the mechanical 

test equipment similar to the neutral position of the upper extremity of the Rajagopal 

model.  

The sensors are positioned on both feet parts, two tibia parts, two femur parts, and 

the pelvis parts of the mechanical test equipment. The foot of the mechanical test 

equipment is accepted as hand, the proximal part of the leg as the proximal part of 

the arm, the distal part of the leg as the distal part of the arm and pelvis as the torso. 

There were a couple of experiments conducted with this arrangement. Firstly, right 

and left wrist joints move separately in the three directions. In the second group 

experiments, right and left elbow joint were performed flexion-extension and 

pronation-supination movements. Third group experiments include flexion-

extension, abduction-adduction, and internal-external rotation movements at right 

and left shoulder joints. 
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The right shoulder adduction-abduction experiment result is presented in Figure 

4.24. In this experiment, approximately 10-degree right shoulder abduction 

movement and an approximately 90 degrees right shoulder abduction movement 

were performed. 

 

 

Figure 4.24. Right shoulder adduction-abduction experiment results 

The left shoulder adduction-abduction experiment result is presented in Figure 4.25. 

In this experiment, the subject performed approximately 80-degree left shoulder 

abduction movement and approximately 10 degrees left shoulder adduction 

movement. 

 

 

Figure 4.25. Left shoulder adduction-abduction experiment results 
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The left elbow flexion experiment result is presented in Figure 4.26. In this 

experiment left elbow flexed to 80-90 degrees. 

 

 

Figure 4.26. Left elbow flexion experiment results 

Results and patterns are consistent with the movements. However, as similar to lower 

extremity tests, the movement of one joint also affects other joints. Especially, this 

movement is a movement that the Rajagopal model cannot perform (restricted 

movement of the model joints), it is transferred to other joints. 

4.4 Multiple Sensor Kinematic and Kinetic Analysis with Human 

Movement Data 

The last step of the motion analysis test is to examine the system with human gait 

data. For these tests, recorded kinematic data from IMU system and kinetic data from 

force plates at METU Biomechanics Laboratory were used.  
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4.4.1 Kinematic and Kinetic Gait Analysis with Human Subject 

Ethical approval for this study was obtained from Middle East Technical University 

Applied Ethics Research Center İAEK with protocol number 0393-ODTUİAEK-

2022, which is presented in Appendix B. 

In these tests, IMU data was collected from a female subject with sensors attached 

to the subject's distal and proximal parts of legs, pelvis and feet. IMU data and force 

plate data were synchronized to collect data simultaneously. Experimental setup is 

presented in Figure 4.27. 

 

 

Figure 4.27. Experimental Setup 

Forty sets of data from the subject were collected when the subject was walking on 

the path where force plates were placed. Walking direction is important for force 
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plates and kinetic analysis. Different codes must be used for different directions. 

Therefore, the subject walked both in Direction 1 and Direction 2, which is presented 

in Figure 4.27, to test the code. 

The processing of kinematic and kinetic data are described in Chapter 3.  

One of the kinematic gait analysis results, when the subject walked to Direction 1, is 

presented and the results were compared with the literature. 

In this experiment, the subject took seven steps, waited 10 seconds before and after 

movement and third and fourth steps coincided with Force Plate 1 and 2, 

respectively.  

Right hip and left hip flexion results are presented in Figure 4.28. Results are 

consistent with the experiments of Fukuchi et al. [46]. They found that maximum 

flexion and extension were 35 and -10 degrees. 

 

Figure 4.28. Right hip and left hip flexion results 

In addition, a comparison of the hip flexion results of the developed system and the 

study of Bovi et al. is presented in Figure 4.29 [47]. In this figure, it can be seen that 

the patterns are compatible. The differences are thought to be due to the subject's 

specific gait pattern. 
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Figure 4.29. Hip flexion comparison for one gait cycle (reproduced from [47]) 

Right hip, left hip and pelvis rotation results are presented in Figure 4.31. As 

mentioned before, the subject stands still for 10 seconds before  walking. Figure 4.31 

shows that there is a drift in the rotation results. Also, drift in the right and left hip 

adduction, pelvis tilt and pelvis list results are presented in Figure 4.35. This drift 

problem was caused by the drift observed in the pelvis sensor data. Figure 4.30 shows 

the pelvis sensor data in the NWU order. Although the subject is standing still in the 

first 10 seconds, it is seen that the drift slope, especially in the x and z axes, is more 

noticeable. This drift is consistent with the findings from the pelvis rotation and 

pelvis list results. 
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Figure 4.30. Pelvis sensor Euler angles result in NWU order 

A slope correction code (presented in Appendix H) was written to solve this problem. 

In this code, the inclination is measured and corrected by using the first one thousand 

data points, which coincides with the first 10 seconds of the data.  

Right hip, left hip and pelvis rotation results after correction are presented in Figure 

4.32.  

 

Figure 4.31. Right hip, left hip and pelvis rotation first results 
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Figure 4.32. Rotation results after slope correction 

Different patterns have been found in the literature for hip rotation results. The 

result calculated by the new system is consistent with the result shared by Fukuchi 

et al., which is presented in Figure 4.34 [46]. 

 

Figure 4.33. Hip rotation comparison for one gait cycle (reproduced from [47]) 
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Figure 4.34. Hip rotation for one gait cycle according to Fukuchi et al. [46] 

 

Right and left hip adduction, pelvis tilt and pelvis list results are presented in Figure 

4.35. Because of the drift in these results, the same slope correction code was applied 

to the data. The results after correction are presented in Figure 4.36.  

 

 

Figure 4.35. Right hip adduction, left hip adduction, pelvis tilt and pelvis list first 

results 
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Figure 4.36. Right hip adduction, left hip adduction, pelvis tilt and pelvis list results 

after slope correction 

Different patterns have been found in the literature for pelvis tilt results. The result 

calculated by the new system is more consistent with the result shared by Fukuchi 

et al., which is presented in Figure 4.38 [46].  

 

Figure 4.37. Pelvis tilt comparison for one gait cycle (reproduced from [47]) 
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Figure 4.38. Pelvis tilt for one gait cycle according to Fukuchi et al. [46] 

It can be seen in the pelvic list comparison results presented in Figure 4.39 that the 

calculated results are consistent with the literature [47]. 

 

 

Figure 4.39. Pelvis list comparison for one gait cycle (reproduced from [47]) 

 

Right and left knee flexion results are presented in Figure 4.40, and comparison of 

the results is shared in Figure 4.41. Patterns of the curves are consistent with the 

experiments of Fukuchi et al. [46] and Bovi et al. [47]. They found that maximum 

knee flexion was 70 degrees. However, results showed that the subject's left knee 
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flexion is 30 degrees maximum. It is thought that the subject's unique gait pattern 

caused this result. 

 

 

Figure 4.40. Right knee and left knee flexion results 

 

 

Figure 4.41. Knee flexion comparison for one gait cycle (reproduced from [47]) 
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In several kinematic data (e.g., pelvic list), drift has been detected, and it is thought 

that the reasons for this are especially the unwanted motion of the pelvis sensor 

during movement and drift of the pelvis sensor data. The pelvic sensor is the main 

sensor and therefore is likely to cause some angles to shift. This issue was solved by 

using the slope correction code. Overall, kinematic analysis results showed that the 

general pattern is stable. 

Before examining the kinematic analysis, GRFs were examined. GRFs from two 

different kinetic analysis experiments are presented in Figures 4.42 and 4.43. In the 

first experiment, the subject walked through Direction 1 and in the second 

experiment subject walked to Direction 2.  

Force Plate 1 and 2 coincide with the right and left foot in the first experiment, 

respectively. In the second experiment, Force Plate 1 coincide with the left step and 

Force Plate 2 with the right step. 

Additionally, GRF from previous kinetic analysis experiments in the same setup with 

a different subject (male subject walking through Direction 1) is presented in Figure 

4.44. 

 

Figure 4.42. GRF in the first kinetic analysis experiment (red line: force plate 1 x 

axis, dark blue line: force plate 1 y axis, green line: force plate 1 z axis, pink line: 

force plate 2 x axis, blue line: force plate 2 y axis, grey line: force plate 2 z axis) 
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Figure 4.43. GRF in the second kinetic analysis experiment (red line: force plate 1 

x axis, dark blue line: force plate 1 y axis, green line: force plate 1 z axis, pink line: 

force plate 2 x axis, blue line: force plate 2 y axis, grey line: force plate 2 z axis) 

 

 

Figure 4.44. GRF example in the previous kinetic analysis experiments (red line: 

force plate 1 x axis, dark blue line: force plate 1 y axis, green line: force plate 1 z 

axis, pink line: force plate 2 x axis, blue line: force plate 2 y axis, grey line: force 

plate 2 z axis) 
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When comparing the experimental data from previous experiments, it is thought that 

there is an impairment in the x-axis of Force Plate 1. Therefore, previous 

experimental data were used to interpret kinetic gait analysis by using data from 

Force Plate 1. On the other hand, new experimental data were used to interpret 

kinetic gait analysis by using data from Force Plate 2 (both walking in Direction 1 

and Direction 2). 

Kinetic gait analysis results from Force Plate 1 are presented in Figure 4.45 for the 

right leg. 

 

 

Figure 4.45. Right leg kinetic analysis results 

Kinetic gait analysis results from Force Plate 2 (when the subject is walking in 

Direction 1) is presented in Figure 4.46. 
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Figure 4.46. Left leg kinetic analysis results when subject walking to Direction 1 

 

Kinetic gait analysis results from Force Plate 2 (when the subject walking in 

Direction 2) is presented in Figure 4.47. 

 

Figure 4.47. Right leg kinetic analysis results when subject is walking in Direction 

2 
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The kinetic analysis results are self-consistent and also consistent with the results in 

the literature [46], [47]. However, two issues were detected when comparing with 

the literature results. 

The first issue is that it has been noticed that some curves are inverse of the literature. 

Knee flexion-extension moment is an example of this issue, and it is noticed that this 

problem is caused by the flexion moment defined to increase progressively in the +y 

direction in OpenSim. However, it has been seen in the literature that this parameter 

is defined to decrease in the +y direction. 

Secondly, it has been found in the literature that kinetic parameters are shared in a 

normalized manner. When obtained moments were normalized with the weight of 

subjects and compared with the literature data, it was observed that experimental 

results were higher than those in the literature. However, as a result of the 

comparison of the data of different subjects with different weights, it was observed 

that the data were consistent within themselves. Additional clinical studies may be 

required to calibrate the force platforms to another calibrated sensor. 

4.4.2 Kinematic Analysis for Human Upper Extremity 

Ethical approval for this study was obtained from Middle East Technical University 

Applied Ethics Research Center İAEK with protocol number 0393-ODTUİAEK-

2022, which is presented in Appendix B. 

In these tests, IMU sensors were attached to the female subject's upper extremity 

segments (torso, hands, right and left proximal and distal parts of arms) and 10 set 

shoulder flexion-extension, shoulder abduction-adduction, elbow flexion-extension, 

elbow pronation-supination data were collected with the help of IMU sensors. In 

these experiments, the right and left segments performed the same movement at the 

same time. 

The processing of kinematic data is described in Chapter 3.  
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The subject flexed her shouders to the highest degree possible in the shoulder flexion 

experiment. Shoulder flexion-extension analysis results are presented in Figure 4.48.  

 

Figure 4.48. Shoulder flexion kinetic analysis results  

The subject flexed her right and left elbows to the highest degree possible in the 

elbow flexion experiment. Elbow flexion analysis results are presented in Figure 

4.49.  

 

Figure 4.49. Elbow flexion kinetic analysis results  
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In the elbow pronation-supination experiment, subject pronated and then supinate 

left and right elbows simultaneously. The analysis results are presented in Figure 

4.50. 

 

Figure 4.50. Elbow pronation-supination kinetic analysis results  

As a result of the experiments, the expected movements in the joints were observed. 

However, unexpected movements were also observed. This situation can be clearly 

seen in Figure 4.50. It is thought that there are two main reasons for these unexpected 

motions. 

The first reason is the sensor positions. Due to the subject anatomy, sensor positions 

can be slightly different from the sensor placements on the Rajagopal model. It is the 

first reason that unwanted movements to are observed in the joints. 

The second reason is that Rajagopal model joints have anatomical limitations. If the 

joints try to exceed these limitations, the OpenSim program evaluates IMU data from 

related segments by using other IMU data and transfers this motion to other joints. 
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CHAPTER 5  

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis deals with the development of an IMU based motion analysis system for 

upper and lower limbs for METU Biomechanics Laboratory. The study is organized 

into two parts. In the first part, the necessary system developments were carried out, 

then experiments were conducted to test the system in the second part. 

After reviewing the literature, the first step was enhancing pre-written code to make 

the kinematic analysis system perform accurately with seven IMU sensors. The 

system is designed to perform both upper and lower limb kinematic analysis. After 

performing coordinate system transformations, sensor fusion is implemented for 

each IMU sensor with Madgwick's Algorithm [31]. Later, the resulting data are 

merged, and joint angles are computed using the Inverse Kinematics Tool of the 

OpenSim. Moreover, motion animation is also developed to observe the motion. 

In the second part of the study, the performance of the system was studied with the 

help of a series of experiments. Primarily, individual sensors were tested, and it was 

detected that the problems were generally related to the coordinate system. Therefore 

the necessary coordinate system transformations were performed again. 

Furthermore, at this step, it was realized that it is more accurate to work with 

quaternions instead of Euler angles. The codes were modified according to this new 

approach.  

Next, a mechanical test system was designed and manufactured for multi-sensor 

experiments. The kinematic analysis system was tested by collecting data from seven 

sensors simultaneously by using the mechanical test system. It was noticed that due 

to the interconnected design of the joints in the OpenSim model, the movement of 
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one joint could also affect other joints. Additionally, drift was detected at some of 

the kinematic analysis results, and this was corrected with slope correction code. 

Thereafter, force plates are used for kinetic analysis. GRFs, moments, the points of 

application and the data generated through kinematic analysis are given as input to 

the OpenSim Inverse Dynamics Tool. Thus, the system was developed to calculate 

the joint reaction moments of the subject. 

Finally, proof-of-concept experiments with a human subject were conducted. Ethics 

committee approval was obtained for these experiments. Kinematic and kinetic data 

(for the lower limb system) were captured from the subject during walking. The drifts 

found in the data were removed by using an add-on code. Also, shoulder flexion-

extension, shoulder abduction-adduction, elbow flexion-extension, and elbow 

pronation-supination data were collected from the subject and analyzed 

kinematically. Overall, results of these analyzes were found to be consistent with the 

literature. 

5.2 Future Work 

Firstly, two sensor-specific problems should be considered in future studies. For 

IMU sensors, experiments should be carried out to verify the drift correction code 

and also other filters, different from the Butterworth filter, may be applied to solve 

the drift problem. As for the force platform, distortion was detected in the data from 

x-axis of the Force Plate 1. It is believed that a hardware-related problem causes this 

distortion, and therefore it should be investigated. 

Secondly, even though experiments to verify the accuracy of the system have been 

performed, it is important and necessary to perform experiments to verify the 

sensitivity of the system. The sensitivity of the system is assumed to be low due to 

the low sensitivity of the LSM9DS1 sensors. Therefore, it might be necessary to 

upgrade the sensors. Additionally, it is recommended to conduct a controlled clinical 
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trial to compare the system with a commercially available system in terms of 

sensitivity. 

Furthermore, the discrete operation of the codes complicates the use of the system. 

In terms of system integrity, it could be important to compile the data collection 

code, pre-processing code, Madgwick Algorithm and OpenSim codes, which will 

accelerate the operation of the system.  

Finally, during data collection, several issues were encountered. These issues were 

determined as failure to record sensor data, incomplete recording, missing data, 

irregular data recording between IMU and force plate, and incorrect recording of 

sensor numbers if the IMUs are farther away from the receiver. Therefore, the system 

and codes related to data collection need to be enhanced with more sensitive sensors 

and a user-friendly interface. Additionally, the visualization of the sensor battery 

levels and the development of comfortable and practical connection tools for 

connecting the sensors to the user will increase the performance of the system. 
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APPENDICES 

A. Technical Drawings of Mechanical System 

Technical Drawings of the mechanical test equipment are presented as. 
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C. Preprocessing Matlab Codes 

• Preprocessing Data Code 1 

clc; 
clear; 
dataPath ='C:\Users\selin\Desktop\DENEY\1.txt'; 
B = dlmread(dataPath); 
numbodies = 7; 
numdata = length(B); 
numframe = numdata/numbodies; 

  
m = 1; 
b = 1; 
v=1; 
y=1; 
f=1; 
g=1; 
e=1; 
a=1; 
c=1; 

  
b2=zeros(300,12); 
b3=zeros(300,12); 
b4=zeros(300,12); 
b5=zeros(300,12); 
b6=zeros(300,12); 
b7=zeros(300,12); 
b8=zeros(300,12); 

  
%% group data according to sensor numbers 

  
  for i = 1:length(B) 
    switch B(i,1) 
        case 2 
          b2(a,1:end) = B(i,1:end); 
          a=a+1; 
        case 3 
          b3(v,1:end) = B(i,1:end); 
          v=v+1; 
         case 4 
          b4(y,1:end) = B(i,1:end); 
          y=y+1;   
          case 5 
          b5(f,1:end) = B(i,1:end); 
          f=f+1;  
          case 6 
          b6(g,1:end) = B(i,1:end); 
          g=g+1;  
          case 7 
          b7(e,1:end) = B(i,1:end); 
          e=e+1;  
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          case 8 
          b8(c,1:end) = B(i,1:end); 
          c=c+1;  
    end 
  end 

  
X= [b2; b3; b4; b5; b6; b7; b8]; 

  
%% write grouped data 

  
fid = fopen('C:\Users\selin\Desktop\DENEY\2.txt','w');  
for i=1:numdata 
           fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\n ',X(i,1:end)); 
end 
        fclose(fid); 

 

 

• Preprocessing Data Code 2 

clc; 
clear; 
dataPath ='C:\Users\selin\Desktop\DENEY\3.txt'; 
B = dlmread(dataPath); 
numbodies = 7; 
numdata = length(B); 
numframe= numdata/numbodies; 

  
% find mean of accelerometer-magnetometer data by using first 100 

data 

  
m = 1; 
b = 1; 

 
for z = 1:7 

 
  for a = 6:11 

     
    C(z,(a-5)) = fix(mean(B(m:m+99,a))); 

     
  end 
m = b*numframe+1; 
b = b+1 
end 

  
D(1,:) = [[2 0 0 0 0], C(1,:), 0]; 
D(2,:) = [[3 0 0 0 0], C(2,:), 0]; 
D(3,:) = [[4 0 0 0 0], C(3,:), 0]; 
D(4,:) = [[5 0 0 0 0], C(4,:), 0]; 
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D(5,:) = [[6 0 0 0 0], C(5,:), 0]; 
D(6,:) = [[7 0 0 0 0], C(6,:), 0]; 
D(7,:) = [[8 0 0 0 0], C(7,:), 0]; 

  

  
for i=1:5000 
    E(i,:) = D(1,:); 
    F(i,:)= D(2,:); 
    G(i,:) = D(3,:); 
    H(i,:) = D(4,:); 
    I(i,:) = D(5,:); 
    S(i,:) = D(6,:); 
    J(i,:) = D(7,:); 
end 

  
%rewrite data with first 5000 data are the mean of first 100 data 

point 

  
line_index =100; 

 
fid = fopen('C:\Users\selin\Desktop\DENEY\4.txt','w+','n','UTF-8'); 

 
         fseek(fid,0,-1); 

 
for z = 1:5000  

 

fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',E(i,1), 

E(i,2),E(i,3),E(i,4),E(i,5),E(i,6),E(i,7),E(i,8),E(i,9),E(i,10),E(i

,11),E(i,12)); 

 
end 

 
for k=1: numframe 
 

A = B(k,:); 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A); 

            
end 

             
%% 

 

for z = 1:5000  

 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\n',F(i,1),F(i,2),F(i,3),F(i,4),F(i,5),F(i,6),F(i,7),F(i,8),F(i

,9),F(i,10),F(i,11),F(i,12)); 

 
end 
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for k=1: numframe 

 
A = B((k+numframe),:); 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A); 

            
end 

       
%% 

 
for z = 1:5000  

 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\n',G(i,1),G(i,2),G(i,3),G(i,4),G(i,5),G(i,6),G(i,7),G(i,8),G(i

,9),G(i,10),G(i,11),G(i,12)); 

 
end 

 
for k=1: numframe 

 
A = B((k+(numframe*2)),:); 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A); 

            
end 

         
%% 

 
for z = 1:5000 

  
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\n',H(i,1),H(i,2),H(i,3),H(i,4),H(i,5),H(i,6),H(i,7),H(i,8),H(i

,9),H(i,10),H(i,11),H(i,12)); 

 
end 

 
for k=1: numframe 

 
A = B((k+(numframe*3)),:); 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A); 

        
end 
         

%% 

 
for z = 1:5000 

  
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t 
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%.0f\n',I(i,1),I(i,2),I(i,3),I(i,4),I(i,5),I(i,6),I(i,7),I(i,8),I(i

,9),I(i,10),I(i,11),I(i,12)); 
end 

 
for k=1: numframe 

 
A = B((k+(numframe*4)),:); 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A); 

            
end 

 
%% 

 
for z = 1:5000  

 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\n',S(i,1),S(i,2),S(i,3),S(i,4),S(i,5),S(i,6),S(i,7),S(i,8),S(i

,9),S(i,10),S(i,11),S(i,12)); 

 
end 

 
for k=1: numframe 

 
A = B((k+(numframe*5)),:); 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A); 

            
end 

 
%% 

 
for z = 1:5000  

 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\n',J(i,1),J(i,2),J(i,3),J(i,4),J(i,5),J(i,6),J(i,7),J(i,8),J(i

,9),J(i,10),J(i,11),J(i,12)); 

 
end 

 
for k=1:numframe 

 
A = B((k+numframe*6),:); 
fprintf(fid,'%.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t %.0f\t 

%.0f\t %.0f\t %.0f\t %.0f\t %.0f\n',A); 

            
end 

       
fprintf(fid,'\r\n'); 
fclose(fid); 
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D. Lower Extremity Kinematic Analysis Codes with Quaternions 

• TestCpp 

function C = TestCpp(dataPath) 
 %#codegen 
fprintf('#App starting..\n\n'); 
rootpath = ''; 
%% 
if  isdeployed() 
    if (nargin<1) 
        dataPath=''; 
        msgbox('Input datapath is empty/null'); 
    end 
else 

  
dataPath ='C:\Users\selin\Desktop\DENEY\1111.txt'; 
    rootpath = 'C:\Users\selin\Desktop\'; 
end 

  
if isempty(dataPath)== false 
    fprintf('loading file from %s\n',dataPath); 
    B = dlmread(dataPath); 
    B = B(:,1:end-1); 
    numbodies = 7; 
    numdata = length(B); 

     

if numdata>=numbodies 
        numframe = numdata/numbodies; 
        diff = numframe - 5000; 
        [C] = Matrices7(B,numbodies,numdata,numframe);     
        pelvis  =  (C.pelvis);    
        femurR =  (C.femurR);           
        femurL =  (C.femurL); 
        tibiaR  =  (C.tibiaR);    
        footR  =  (C.footR); 
        footL  =  (C.footL); 
        tibiaL =  (C.tibiaL); 

         

  
        % Write to file 
         fid = fopen('mlab.sto','w+','n','UTF-8'); 
         fseek(fid,0,-1); 

    
       fprintf(fid,'\r\nDataRate=100.000000');   
       fprintf(fid,'\r\nDataType=Quaternion'); 
       fprintf(fid,'\r\nversion=3'); 
       fprintf(fid,'\r\nOpenSimVersion=4.3'); 
       fprintf(fid,'\r\nendheader');  

              
       fprintf(fid,'\r\ntime '); 
       fprintf(fid,'\t pelvis_imu'); 
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       fprintf(fid,'\t tibia_r_imu'); 
       fprintf(fid,'\t femur_r_imu'); 
       fprintf(fid,'\t calcn_r_imu'); 
       fprintf(fid,'\t calcn_l_imu'); 
       fprintf(fid,'\t tibia_l_imu'); 
       fprintf(fid,'\t femur_l_imu'); 
       line_index =1; 

        
        for k=5000: numframe 

           
           fprintf(fid,'\r\n%.2f\t',(line_index/100.0)); 

             
           lpelvis1 = pelvis(k,1); 
           lpelvis2 = pelvis(k,2); 
           lpelvis3 = pelvis(k,3); 
           lpelvis4 = pelvis(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lpelvis1, lpelvis2, 

lpelvis3, lpelvis4); 

            
           ltibiar1 = tibiaR(k,1); 
           ltibiar2 = tibiaR(k,2); 
           ltibiar3 = tibiaR(k,3); 
           ltibiar4 = tibiaR(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', ltibiar1, ltibiar2, 

ltibiar3, ltibiar4); 

             
           lfemurr1 = femurR(k,1); 
           lfemurr2 = femurR(k,2); 
           lfemurr3 = femurR(k,3); 
           lfemurr4 = femurR(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lfemurr1, lfemurr2, 

lfemurr3, lfemurr4); 

          
           lfootr1 = footR(k,1); 
           lfootr2 = footR(k,2); 
           lfootr3 = footR(k,3); 
           lfootr4 = footR(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lfootr1, lfootr2, 

lfootr3, lfootr4); 

       
           lfootl1 = footL(k,1); 
           lfootl2 = footL(k,2); 
           lfootl3 = footL(k,3); 
           lfootl4 = footL(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lfootl1, lfootl2, 

lfootl3, lfootl4); 

            
           ltibial1 = tibiaL(k,1); 
           ltibial2 = tibiaL(k,2); 
           ltibial3 = tibiaL(k,3); 
           ltibial4 = tibiaL(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', ltibial1, ltibial2, 

ltibial3, ltibial4); 
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           lfemurl1 = femurL(k,1); 
           lfemurl2 = femurL(k,2); 
           lfemurl3 = femurL(k,3); 
           lfemurl4 = femurL(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f', lfemurl1, lfemurl2, 

lfemurl3, lfemurl4); 

            
            line_index = line_index+1; 
            end 
        end 

        
        fprintf(fid,'\r\n'); 
        fclose(fid); 

        
end 

  
%%  
clear all; 
close all;  
clc; 
import org.opensim.modeling.* 

  
%% OpenSim variables  
modelFileName = 'Rajagopal_2015.osim';                     
orientationsFileName = 'mlab.sto';                          
sensor_to_opensim_rotations = Vec3(-pi/2, 0, 0);             
baseIMUName = 'pelvis_imu';                                  
baseIMUHeading = 'x';                                        
visulizeCalibration = true;                                  

  
%% IMUPlacer tool 
imuPlacer = IMUPlacer(); 

  
% IMUPlacer properties 
imuPlacer.set_model_file(modelFileName); 
imuPlacer.set_orientation_file_for_calibration(orientationsFileName

); 
imuPlacer.set_sensor_to_opensim_rotations(sensor_to_opensim_rotatio

ns); 
imuPlacer.set_base_imu_label(baseIMUName); 
imuPlacer.set_base_heading_axis(baseIMUHeading); 

  
imuPlacer.run(visulizeCalibration); 

  
model = imuPlacer.getCalibratedModel(); 

  
%% calibrated model 
model.print( strrep(modelFileName, '.osim', '_calibrated.osim') ); 

  
%% Clear the Workspace variables.  
clear all; close all; clc; 
import org.opensim.modeling.* 
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%% OpenSim variables  
modelFileName = 'Rajagopal_2015_calibrated.osim';                 
orientationsFileName = 'mlab.sto';    
sensor_to_opensim_rotation = Vec3(-pi/2, 0, 0);  
visualizeTracking = true;   
startTime = 0;            
endTime = 40;               
resultsDirectory = 'IKResults'; 

  
%% InverseKinematicsTool 
imuIK = IMUInverseKinematicsTool(); 

  

%% tracking 
imuIK.set_model_file(modelFileName); 
imuIK.set_orientations_file(orientationsFileName); 
imuIK.set_sensor_to_opensim_rotations(sensor_to_opensim_rotation) 

  
imuIK.set_time_range(0, startTime);  
imuIK.set_time_range(1, endTime);    

  
imuIK.set_results_directory(resultsDirectory) 

  
% Run IK 

  
imuIK.run(visualizeTracking); 
fprintf('#Finished\n'); 
end 

  

 

• Matrices 

function [C] = Matrices7(A,numbodies,numdata,numframe) 
rt = 1;rf = 1;p = 1;lf = 1;lt = 1; rfo=1; lfo=1; 
B = A(1:numdata,:); 
numcolB = size(B,2); 
imufield1 = 'val'; 
imufield2 = 'bodynames'; 
nul1 = cell(1,numbodies); 
nul2 = cell(1,numbodies); 

  
for i = 1:numbodies 
    nul1{i} = zeros(numdata,numcolB-1); 
    nul2{i} = 'al'; 
end  

  
imu = struct(imufield1,nul1,imufield2,nul2); 
for i = 1:length(B) 
    switch B(i,1) 
        case 2 
            imu(6).val(rfo,:) = B(i,2:end); %right foot 
            imu(6).bodynames = 'rfo'; 
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            rfo = rfo+1; 
        case 3 
            imu(1).val(rt,:) = B(i,2:end); %right tibia 
            imu(1).bodynames = 'rt'; 
            rt = rt+1; 
        case 4 
            imu(2).val(rf,:) = B(i,2:end); %right femur 
            imu(2).bodynames = 'rf'; 
            rf = rf+1; 
        case 5 
            imu(3).val(p,:) = B(i,2:end); %pelvis 
            imu(3).bodynames = 'pe'; 
            p = p+1; 
        case 6 
            imu(4).val(lf,:) = B(i,2:end); %left femur 
            imu(4).bodynames = 'lf'; 
            lf = lf+1; 
        case 7 
            imu(5).val(lt,:) = B(i,2:end); %left tibia 
            imu(5).bodynames = 'lt'; 
            lt = lt+1; 
        case 8 
            imu(7).val(lfo,:) = B(i,2:end); %left foot 
            imu(7).bodynames = 'lf0'; 
            lfo = lfo+1; 
    end 
end 

  
[C.pelvis] = Calculations(imu(3).val(1:numframe,:)); 
[C.footR] = Calculations4(imu(6).val(1:numframe,:)); 
[C.footL] = Calculations4(imu(7).val(1:numframe,:)); 
[C.femurR] = Calculations2(imu(2).val(1:numframe,:)); 
[C.femurL] = Calculations3(imu(4).val(1:numframe,:)); 
[C.tibiaR] = Calculations2(imu(1).val(1:numframe,:)); 
[C.tibiaL] = Calculations3(imu(5).val(1:numframe,:)); 

  
trc_frame_no = size(C.pelvis,4); 
num_frame = trc_frame_no-5000; 

 

• Calculations 

function out = Calculations(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5; %in sensor text document acceleration columns are 5,6 and 7 
gy = 2; %in sensor text document angular velocity columns are 2,3 

and 4 
m = 8; %in sensor text document magnetic measurement columns are 

8,9 and 10 
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%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) =  -B(:,a+2)/acc_mult;%acc z 
A(:,a+1) = -B(:,a)/acc_mult;%acc x 
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y 

  

  
A(:,gy) = -B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+1) =  -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y  

  

  
A(:,m) = -B(:,m+2)/magno_mult; %magno z 
A(:,m+1) =  B(:,m)/magno_mult; %magno x 
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion1 = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 

  
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 

  
q0 = mean(quaternionst(av-10:av,:)); 
q1=quaternConj(q0); 

  
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 

  
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion1(t, :) = AHRS2.Quaternion; 
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q2(t, :)=quaternConj(quaternion1(t, :)); 
quaternion2(t, :)=quaternProd(q2(t, :),q0); 
quaternion2(t, 4)=-quaternion2(t, 4); 

  
end 

  
out=(quaternion2); 

 

• Calculations2 

function out = Calculations2(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5; 
gy = 2; 
m = 8; 

  
%%   
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) = -B(:,a)/acc_mult;%acc x  
A(:,a+1) = B(:,a+2)/acc_mult;%acc z 
A(:,a+2) = -B(:,a+1)/acc_mult; %acc y 

  
A(:,gy) = -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y  

  
A(:,m) = B(:,m)/magno_mult; %magno x 
A(:,m+1) = B(:,m+2)/magno_mult; %magno z 
A(:,m+2) = -B(:,m+1)/magno_mult;  %magno y 

  
%% 

  
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
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Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 

  
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 

  
q0 = mean(quaternionst(av-10:av,:)); 
q1=quaternConj(q0); 

  
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 

  
for t = 1:length(time) 

     
AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
quaternion1(t, :) = AHRS2.Quaternion; 
q2(t, :)=quaternConj(quaternion1(t, :)); 
quaternion2(t, :)=quaternProd(q2(t, :),q0); 
quaternion2(t, 4)=-quaternion2(t, 4); 

  
end 
out=(quaternion2); 

 

 

• Calculations3 

function out = Calculations3(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5; 
gy = 2; 
m = 8; 

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) = B(:,a)/acc_mult;%acc x  
A(:,a+1) = B(:,a+2)/acc_mult;%acc z 
A(:,a+2) = B(:,a+1)/acc_mult;%acc y 
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A(:,gy) = B(:,gy)/gyro_mult; %gyro x 
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+2) = B(:,gy+1)/gyro_mult; %gyro y  

  
A(:,m) = -B(:,m)/magno_mult; %magno x 
A(:,m+1) = B(:,m+2)/magno_mult; %magno z 
A(:,m+2) = B(:,m+1)/magno_mult; %magno y 

  
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion1 = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 

  
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 

  
q0 = mean(quaternionst(av-10:av,:)); 

 

 

• Calculations4 

 

function out = Calculations4(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5;%in sensor text document acceleration columns are 5,6 and 7 
gy = 2;%in sensor text document angular velocity columns are 2,3 

and 4 
m = 8;%in sensor text document magnetic measurement columns are 8,9 

and 10 
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%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) =  B(:,a+1)/acc_mult;% acc y 
A(:,a+1) = -B(:,a)/acc_mult;%acc x 
A(:,a+2) = -B(:,a+2)/acc_mult;%acc z   

  
A(:,gy) = B(:,gy+1)/gyro_mult; %gyro y 
A(:,gy+1) =  -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+2) = -B(:,gy+2)/gyro_mult; %gyro z  

  
A(:,m) = B(:,m+1)/magno_mult; %magno y 
A(:,m+1) =  B(:,m)/magno_mult; %magno x 
A(:,m+2) = -B(:,m+2)/magno_mult; %magno z 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 

  
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 

  
q0 = mean(quaternionst(av-10:av,:)); 
q1=quaternConj(q0); 

  
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 

  
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion1(t, :) = AHRS2.Quaternion; 
q2(t, :)=quaternConj(quaternion1(t, :)); 
quaternion2(t, :)=quaternProd(q2(t, :),q0); 
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quaternion2(t, 2)=-quaternion2(t, 2); 

  
end 
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E. Lower Extremity Kinematic Analysis Codes with Euler Angles 

• Calculations 

function out = Calculations(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5;%in sensor text document acceleration columns are 5,6 and 7 
gy = 2;%in sensor text document angular velocity columns are 2,3 

and 4 
m = 8;%in sensor text document magnetic measurement columns are 8,9 

and 10 

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 
A(:,a) =  -B(:,a+2)/acc_mult;%acc z 
A(:,a+1) = -B(:,a)/acc_mult;%acc x 
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y 

  
A(:,gy) = -B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+1) =  -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y  

  

A(:,m) = -B(:,m+2)/magno_mult; %magno z 
A(:,m+1) =  B(:,m)/magno_mult; %magno x 
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 
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q0 = mean(quaternionst(av-10:av,:)); 
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 

  
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion(t, :) = AHRS2.Quaternion; 

  
end 

  
euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use 

conjugate for sensor frame relative to Earth and convert to 

degrees. 
euler=eulercorrect(euler,step); 
ksimat = euler(:,3)-mean(euler(1:20,3)); 
thmat = euler(:,2)-mean(euler(1:20,2)); 
fimat = euler(:,1)-mean(euler(1:20,1)); 

  
for i = 1:length(fimat) 
 quat(i,:) = 

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180); 
end 

  
out=(quat); 

 

 

• Calculations2 

function out = Calculations2(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5; 
gy = 2; 
m = 8; 

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) = -B(:,a)/acc_mult;%acc x  
A(:,a+1) = B(:,a+2)/acc_mult;%acc z 
A(:,a+2) = -B(:,a+1)/acc_mult; %acc y 

  
A(:,gy) = -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y  

  
A(:,m) = B(:,m)/magno_mult; %magno x 
A(:,m+1) = B(:,m+2)/magno_mult; %magno z 
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A(:,m+2) = -B(:,m+1)/magno_mult; %magno y 

  
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 

  
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 

  
q0 = mean(quaternionst(av-10:av,:)); 
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 

  
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion(t, :) = AHRS2.Quaternion; 
     quaternion2(t, :) = quaternion(t,:)- quaternConj(q0); 
end 

  
euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use 

conjugate for sensor frame relative to Earth and convert to 

degrees. 
euler=eulercorrect(euler,step); 
ksimat = euler(:,3)-mean(euler(1:20,3)); 
thmat = euler(:,2)-mean(euler(1:20,2)); 
fimat = euler(:,1)-mean(euler(1:20,1)); 

  
for i = 1:length(fimat) 
    quat(i,:) = 

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180); 
end 

  
out=(quat); 
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• Calculations3 

function out = Calculations3(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5; 
gy = 2; 
m = 8; 

  

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 
A(:,a) = B(:,a)/acc_mult;%acc x  
A(:,a+1) = B(:,a+2)/acc_mult;%acc z 
A(:,a+2) = B(:,a+1)/acc_mult; %acc y 

  
A(:,gy) = B(:,gy)/gyro_mult; %gyro x 
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+2) = B(:,gy+1)/gyro_mult; %gyro y  

  
A(:,m) = -B(:,m)/magno_mult; %magno x 
A(:,m+1) = B(:,m+2)/magno_mult; %magno z 
A(:,m+2) = B(:,m+1)/magno_mult; %magno y 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 

  
q0 = mean(quaternionst(av-10:av,:)); 
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 
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for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion(t, :) = AHRS2.Quaternion; 
       quaternion2(t, :) = quaternion(t,:)- quaternConj(q0); 
end 

  
euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use 

conjugate for sensor frame relative to Earth and convert to 

degrees. 
euler=eulercorrect(euler,step); 
ksimat = euler(:,3)-mean(euler(1:20,3)); 
thmat = euler(:,2)-mean(euler(1:20,2)); 
fimat = euler(:,1)-mean(euler(1:20,1)); 

  
for i = 1:length(fimat) 
    quat(i,:) = 

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180); 
end 

  
out=(quat); 

 

 

• Calculations4 

function out = Calculations4(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5;%in sensor text document acceleration columns are 5,6 and 7 
gy = 2;%in sensor text document angular velocity columns are 2,3 

and 4 
m = 8;%in sensor text document magnetic measurement columns are 8,9 

and 10 

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) =  B(:,a+1)/acc_mult;% acc y 
A(:,a+1) = -B(:,a)/acc_mult;%acc x 
A(:,a+2) = -B(:,a+2)/acc_mult;%acc z   

  
A(:,gy) = B(:,gy+1)/gyro_mult; %gyro y 
A(:,gy+1) =  -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+2) = -B(:,gy+2)/gyro_mult; %gyro z  

  
A(:,m) = B(:,m+1)/magno_mult; %magno y 
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A(:,m+1) =  B(:,m)/magno_mult; %magno x 
A(:,m+2) = -B(:,m+2)/magno_mult; %magno z 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 

  
q0 = mean(quaternionst(av-10:av,:)); 
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 

  
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion(t, :) = AHRS2.Quaternion; 
    quaternion2(t, :) = quaternion(t,:)- quaternConj(q0); 
end 

  
euler = quatern2euler(quaternConj(quaternion)) * (180/pi);% use 

conjugate for sensor frame relative to Earth and convert to 

degrees. 
euler=eulercorrect(euler,step); 
ksimat = euler(:,3)-mean(euler(1:20,3)); 
thmat = euler(:,2)-mean(euler(1:20,2)); 
fimat = euler(:,1)-mean(euler(1:20,1)); 

  
for i = 1:length(fimat) 
    quat(i,:) = 

eu2qtr(fimat(i)*pi/180,thmat(i)*pi/180,ksimat(i)*pi/180); 
end 

  
out = quat; 
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F. Upper Extremity Kinematic Analysis Codes 

• TestCpp 

function C = TestCpp7(dataPath) 
 %#codegen 
fprintf('#App starting..\n\n'); 
rootpath = ''; 
%% 
if  isdeployed() 
    if (nargin<1) 
        dataPath=''; 
        msgbox('Input datapath is empty/null'); 
    end 
else 
    dataPath ='C:\Users\selin\Desktop\DENEY\1.txt'; 

  
    rootpath = 'C:\Users\selin\Desktop\'; 
end 

  
if isempty(dataPath)== false 
    fprintf('loading file from %s\n',dataPath); 
    B = dlmread(dataPath); 
    B = B(:,1:end-1); 
    numbodies = 7; 
    numdata = length(B); 
    if numdata>=numbodies 
        numframe = numdata/numbodies; 
        diff = numframe - 5000; 
        [C] = Matrices7(B,numbodies,numdata,numframe);     
        torso  =  (C.torso);    
        humerusR =  (C.humerusR);           
        humerusL =  (C.humerusL); 
        ulnaR  =  (C.ulnaR);    
        handR  =  (C.handR); 
        handL  =  (C.handL); 
        ulnaL =  (C.ulnaL); 

        
        % Write to file 
         fid = fopen('mlab.sto','w+','n','UTF-8'); 
         fseek(fid,0,-1); 

    
        fprintf(fid,'\r\nDataRate=100.000000');   
        fprintf(fid,'\r\nDataType=Quaternion'); 
        fprintf(fid,'\r\nversion=3'); 
        fprintf(fid,'\r\nOpenSimVersion=4.3'); 
        fprintf(fid,'\r\nendheader');  

         

         

         
       fprintf(fid,'\r\ntime '); 
       fprintf(fid,'\t torso_imu'); 
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       fprintf(fid,'\t ulna_r_imu'); 
       fprintf(fid,'\t humerus_r_imu'); 
       fprintf(fid,'\t hand_r_imu'); 
       fprintf(fid,'\t hand_l_imu'); 
       fprintf(fid,'\t ulna_l_imu'); 
       fprintf(fid,'\t humerus_l_imu'); 
       line_index =1; 

        
        for k=5000: numframe 

           
            fprintf(fid,'\r\n%.2f\t',(line_index/100.0)); 

             
            ltorso1 = torso(k,1); 
            ltorso2 = torso(k,2); 
            ltorso3 = torso(k,3); 
            ltorso4 = torso(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', ltorso1, ltorso2, 

ltorso3, ltorso4); 

            
            lulnar1 = ulnaR(k,1); 
            lulnar2 = ulnaR(k,2); 
            lulnar3 = ulnaR(k,3); 
            lulnar4 = ulnaR(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lulnar1, lulnar2, 

lulnar3, lulnar4); 

             
            lhumerusr1 = humerusR(k,1); 
            lhumerusr2 = humerusR(k,2); 
            lhumerusr3 = humerusR(k,3); 
            lhumerusr4 = humerusR(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lhumerusr1, 

lhumerusr2, lhumerusr3, lhumerusr4); 

          
            lhandr1 = handR(k,1); 
            lhandr2 = handR(k,2); 
            lhandr3 = handR(k,3); 
            lhandr4 = handR(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lhandr1, lhandr2, 

lhandr3, lhandr4); 

       
            lhandl1 = handL(k,1); 
            lhandl2 = handL(k,2); 
            lhandl3 = handL(k,3); 
            lhandl4 = handL(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lhandl1, lhandl2, 

lhandl3, lhandl4); 

            
            lulnal1 = ulnaL(k,1); 
            lulnal2 = ulnaL(k,2); 
            lulnal3 = ulnaL(k,3); 
            lulnal4 = ulnaL(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f\t', lulnal1, lulnal2, 

lulnal3, lulnal4); 
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            lhumerusl1 = humerusL(k,1); 
            lhumerusl2 = humerusL(k,2); 
            lhumerusl3 = humerusL(k,3); 
            lhumerusl4 = humerusL(k,4); 
           fprintf(fid,'%.6f,%.6f,%.6f,%.6f', lhumerusl1, 

lhumerusl2, lhumerusl3, lhumerusl4); 

            
            line_index = line_index+1; 
            end 
        end 

        
        fprintf(fid,'\r\n'); 
        fclose(fid); 

  
end 

  
%% 
clear all; 
close all;  
clc; 
import org.opensim.modeling.* 

  
%% OpenSim variables 
modelFileName = 'Rajagopal_2015.osim';          % The path to an 

input model 
orientationsFileName = 'mlab.sto';   % The path to orientation data 

for calibration  
sensor_to_opensim_rotations = Vec3(pi/2, 0, 0);% The rotation of 

IMU data to the OpenSim world frame  
baseIMUName = 'torso_imu';                     % The base IMU is 

the IMU on the base body of the model that dictates the heading 

(forward) direction of the model. 
baseIMUHeading = '-x';                           % The Coordinate 

Axis of the base IMU that points in the heading direction.  
visulizeCalibration = true;                     % Boolean to 

Visualize the Output model 

  
%% imuPlacer 
imuPlacer = IMUPlacer(); 

  
imuPlacer.set_model_file(modelFileName); 
imuPlacer.set_orientation_file_for_calibration(orientationsFileName

); 
imuPlacer.set_sensor_to_opensim_rotations(sensor_to_opensim_rotatio

ns); 
imuPlacer.set_base_imu_label(baseIMUName); 
imuPlacer.set_base_heading_axis(baseIMUHeading); 

  
imuPlacer.run(visulizeCalibration); 

  
model = imuPlacer.getCalibratedModel(); 
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model.print( strrep(modelFileName, '.osim', '_calibrated.osim') ); 
%%  
clear all; close all; clc; 
import org.opensim.modeling.* 

  
%% OpenSim Variables  
modelFileName = 'Rajagopal_2015_calibrated.osim';                % 

The path to an input model 
orientationsFileName = 'mlab.sto';   % The path to orientation data 

for calibration  
sensor_to_opensim_rotation = Vec3(pi/2, 0, 0); % The rotation of 

IMU data to the OpenSim world frame  
visualizeTracking = true;  % Boolean to Visualize the tracking 

simulation 
startTime = 0;          % Start time (in seconds) of the tracking 

simulation.  
endTime = 40;              % End time (in seconds) of the tracking 

simulation. 
resultsDirectory = 'IKResults'; 

  
%% InverseKinematicsTool 
imuIK = IMUInverseKinematicsTool(); 

  
%% tracking 
imuIK.set_model_file(modelFileName); 
imuIK.set_orientations_file(orientationsFileName); 
imuIK.set_sensor_to_opensim_rotations(sensor_to_opensim_rotation) 

  
imuIK.set_time_range(0, startTime);  
imuIK.set_time_range(1, endTime);    

  
imuIK.set_results_directory(resultsDirectory) 

  
% Run IK 
imuIK.run(visualizeTracking); 
fprintf('#Finished\n'); 
end 

  

 

• Matrices 

function [C] = Matrices7(A,numbodies,numdata,numframe) 
rt = 1;rf = 1;p = 1;lf = 1;lt = 1; rfo=1; lfo=1; 
B = A(1:numdata,:); 
numcolB = size(B,2); 
imufield1 = 'val'; 
imufield2 = 'bodynames'; 
nul1 = cell(1,numbodies); 
nul2 = cell(1,numbodies); 
for i = 1:numbodies 
    nul1{i} = zeros(numdata,numcolB-1); 
    nul2{i} = 'al'; 
end  
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imu = struct(imufield1,nul1,imufield2,nul2); 
for i = 1:length(B) 
    switch B(i,1) 
        case 2 
            imu(6).val(rfo,:) = B(i,2:end); %right hand 
            imu(6).bodynames = 'rha'; 
            rfo = rfo+1; 
        case 3 
            imu(1).val(rt,:) = B(i,2:end); %right ulna 
            imu(1).bodynames = 'ru'; 
            rt = rt+1; 
        case 4 
            imu(2).val(rf,:) = B(i,2:end); %right humerus 
            imu(2).bodynames = 'rh'; 
            rf = rf+1; 
        case 5 
            imu(3).val(p,:) = B(i,2:end); %torso 
            imu(3).bodynames = 'to'; 
            p = p+1; 
        case 6 
            imu(4).val(lf,:) = B(i,2:end); %left humerus 
            imu(4).bodynames = 'lh'; 
            lf = lf+1; 
        case 7 
            imu(5).val(lt,:) = B(i,2:end); %left ulna 
            imu(5).bodynames = 'lu'; 
            lt = lt+1; 
        case 8 
            imu(7).val(lfo,:) = B(i,2:end); %left hand 
            imu(7).bodynames = 'lha'; 
            lfo = lfo+1; 
    end 
end 
[C.torso] = Calculations(imu(3).val(1:numframe,:)); 
[C.handR] = Calculations4(imu(6).val(1:numframe,:)); 
[C.handL] = Calculations4(imu(7).val(1:numframe,:)); 
[C.humerusR] = Calculations2(imu(2).val(1:numframe,:)); 
[C.humerusL] = Calculations3(imu(4).val(1:numframe,:)); 
[C.ulnaR] = Calculations2(imu(1).val(1:numframe,:)); 
[C.ulnaL] = Calculations3(imu(5).val(1:numframe,:)); 

  
trc_frame_no = size(C.torso,4); 
num_frame = trc_frame_no-5000; 

 

• Calculations 

function out = Calculations(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5;%in sensor text document acceleration columns are 5,6 and 7 
gy = 2;%in sensor text document angular velocity columns are 2,3 

and 4 
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m = 8;%in sensor text document magnetic measurement columns are 8,9 

and 10 

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) =  -B(:,a+2)/acc_mult;%acc z 
A(:,a+1) = -B(:,a)/acc_mult;%acc x 
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y 

  
A(:,gy) = -B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+1) =  -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y  

  
A(:,m) = -B(:,m+2)/magno_mult; %magno z 
A(:,m+1) =  B(:,m)/magno_mult; %magno x 
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y 

  
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion1 = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 
q0 = mean(quaternionst(av-10:av,:)); 
q1=quaternConj(q0); 

  
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion1(t, :) = AHRS2.Quaternion; 
q2(t, :)=quaternConj(quaternion1(t, :)); 
quaternion2(t, :)=quaternProd(q2(t, :),q0); 
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quaternion2(t, 4)=-quaternion2(t, 4); 
end 

  
out=(quaternion2); 

 

• Calculations2 

function out = Calculations2(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5; 
gy = 2; 
m = 8; 

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 
A(:,a) = -B(:,a)/acc_mult;%acc x  
A(:,a+1) = B(:,a+2)/acc_mult;%acc z 
A(:,a+2) = -B(:,a+1)/acc_mult; 

  
A(:,gy) = -B(:,gy)/gyro_mult; %gyro x 
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y  

  
A(:,m) = B(:,m)/magno_mult; %magno x 
A(:,m+1) = B(:,m+2)/magno_mult; %magno z 
A(:,m+2) = -B(:,m+1)/magno_mult; %magno y 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
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    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 
q0 = mean(quaternionst(av-10:av,:)); 
q1=quaternConj(q0); 
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 

  
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion1(t, :) = AHRS2.Quaternion; 
q2(t, :)=quaternConj(quaternion1(t, :)); 
quaternion2(t, :)=quaternProd(q2(t, :),q0); 
quaternion2(t, 4)=-quaternion2(t, 4); 
end 

  
out=(quaternion2); 

 

• Calculations3 

function out = Calculations3(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5; 
gy = 2; 
m = 8; 

  

  
%% 
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 
A(:,a) = B(:,a)/acc_mult;%acc x  
A(:,a+1) = B(:,a+2)/acc_mult;%acc z 
A(:,a+2) = B(:,a+1)/acc_mult; 

  
A(:,gy) = B(:,gy)/gyro_mult; %gyro x 
A(:,gy+1) = B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+2) = B(:,gy+1)/gyro_mult; %gyro y  

  
A(:,m) = -B(:,m)/magno_mult; %magno x 
A(:,m+1) = B(:,m+2)/magno_mult; %magno z 
A(:,m+2) = B(:,m+1)/magno_mult; 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
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Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion1 = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 
q0 = mean(quaternionst(av-10:av,:)); 
q1=quaternConj(q0); 
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion1(t, :) = AHRS2.Quaternion; 
q2(t, :)=quaternConj(quaternion1(t, :)); 
quaternion2(t, :)=quaternProd(q2(t, :),q0); 
quaternion2(t, 3)=-quaternion2(t, 3); 
end 

  
out=(quaternion2); 

 

• Calculations4 

function out = Calculations4(B)%#codegen 
A = B; 
frq = 100;  
time = (0:1/frq:(length(A(:,1))-1)/frq)'; 
step = length(time); 
a = 5;%in sensor text document acceleration columns are 5,6 and 7 
gy = 2;%in sensor text document angular velocity columns are 2,3 

and 4 
m = 8;%in sensor text document magnetic measurement columns are 8,9 

and 10 

  
%%  
acc_mult = 16340;  
gyro_mult = 1000/8.75;  
magno_mult = 1000/0.29; 

  
A(:,a) =  B(:,a+2)/acc_mult;%acc z 
A(:,a+1) = B(:,a)/acc_mult;%acc x 
A(:,a+2) = -B(:,a+1)/acc_mult;% acc y 

  
A(:,gy) = B(:,gy+2)/gyro_mult; %gyro z 
A(:,gy+1) =  B(:,gy)/gyro_mult; %gyro x 
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A(:,gy+2) = -B(:,gy+1)/gyro_mult; %gyro y  

  

  
A(:,m) = B(:,m+2)/magno_mult; %magno z 
A(:,m+1) =  -B(:,m)/magno_mult; %magno x 
A(:,m+2) = -B(:,m+1)/magno_mult; 
%% 
dur = 1:step; 
Accelerometer = [A(dur,a) A(dur,a+1) A(dur,a+2)]; 
Gyroscope = [A(dur,gy) A(dur,gy+1) A(dur,gy+2)]; 
Magnetometer = [A(dur,8) A(dur,9) A(dur,10)]; 
Filtered_GYR_end = myFilt(Gyroscope(5001:step,1:3)); 
Filtered_ACC_end = myFilt(Accelerometer(5001:step,1:3)); 
Filtered_MAG_end = myFilt(Magnetometer(5001:step,1:3)); 
Filtered_GYR = [Gyroscope(1:5000,:);Filtered_GYR_end]; 
Filtered_ACC = [Accelerometer(1:5000,:);Filtered_ACC_end]; 
Filtered_MAG = [Magnetometer(1:5000,:);Filtered_MAG_end]; 
beta = 0.05; 
AHRS = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', beta); 
quaternion = zeros(length(time), 4); 
Cse = zeros(3,3,length(time)); 
av = 5000; 
quaternionst = zeros(av, 4); 
for t = 1:av 
    AHRS.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));    % gyroscope units must be radians 
    quaternionst(t, :) = AHRS.Quaternion; 
    Cse(:,:,t) = q2mat(quaternionst(t,:)); 
end 
q0 = mean(quaternionst(av-10:av,:)); 
q1=quaternConj(q0); 
AHRS2 = AHRSAlgorithm('SamplePeriod', 1/100, 'Beta', 

beta,'Quaternion',q0); 
for t = 1:length(time) 
    AHRS2.Update(Filtered_GYR(t,:)*pi/180, Filtered_ACC(t,:), 

Filtered_MAG(t,:));   % gyroscope units must be radian/s 
    quaternion1(t, :) = AHRS2.Quaternion; 
q2(t, :)=quaternConj(quaternion1(t, :)); 
quaternion2(t, :)=quaternProd(q2(t, :),q0); 
quaternion2(t, 4)=-quaternion2(t, 4); 

  
end 

  
out=(quaternion2); 
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G. Kinetic Analysis Codes 

• Grfmot(to Direction 1) 

% lab to the window(Direction 1) 
fprintf('#App starting..\n\n'); 
rootpath = ''; 
%% 
if  isdeployed() 
    if (nargin<1) 
        dataPath=''; 
        msgbox('Input datapath is empty/null'); 
    end 
else 
dataPath ='C:\Users\selin\Desktop\bes sensor - 

quaternion\yeni\3302_force_plate.txt'; 
    rootpath = 'C:\Users\selin\Desktop\'; 
end 

  
if isempty(dataPath)== false 
    fprintf('loading file from %s\n',dataPath); 
    plate = dlmread(dataPath); 
    all_readings = plate(:,1:end-1); 
 end 
    readings_plate1 = all_readings(:,1:6)/20; 
    readings_plate1(:,3) = readings_plate1(:,3)*2;  
    readings_plate11=transpose(readings_plate1);  

     
    readings_plate2 = all_readings(:,7:end)/20; 
    readings_plate2(:,3) = readings_plate2(:,3)*2; 
      readings_plate22=transpose(readings_plate2); 

     

  
    Cal_C1 = [-1281.5 -18.1 -2.3 -3.5 -7 -10.3;... 
              -26.6 1272.1 -3.3 -3.5 -4.9 -27.7;... 
              25.5 3.6 1878.8 20.6 -3.7 -12.1;... 
              3.8 -147 0.3 581.8 6.8 2.9;... 
              -146 -0.7 -0.4 2.3 402 -2.0;... 
              1.3 -3.7 -0.7 5 -0.03 295.5]; 

  
    Cal_C2 = [1510 -29 18 5 -6 -8;... 
              34 1519 1 -3 -1 -33;... 
              -33 -1 3014 23 4 -19;... 
              -5 -179 -1 789 8 3;... 
              176 0 -3 6 551 -2;... 
              0 -5 -2 1 2 354]; 

  
    FM1 = Cal_C1*readings_plate11; 
    FM2 = Cal_C2*readings_plate22; 
    FM11=transpose(FM1); 
    FM22=transpose(FM2); 
   time = size(FM22,1); 
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    zz= 0.005*ones(1,time); 
    zzz=transpose(zz);   

     
   %Point of application of force(force plate1; x axis)  

   
    v1=-transpose(zz)*FM1(1,:); 
    x1=(v1(1,:)-FM1(5,:))./FM1(3,:); 
    x11=transpose(x1); 

     
   %Point of application of force(force plate2; x axis)  
    v2=-transpose(zz)*FM2(1,:); 
    x2=(v2(1,:)-FM2(5,:))./FM2(3,:); 
    x22=transpose(x2); 

     
   %Point of application of force(force plate1; y axis)  
    q1=-transpose(zz)*FM1(2,:); 
    y1=(q1(1,:)+FM1(4,:))./FM1(3,:); 
    y11=transpose(y1); 

  
    %Point of application of force(force plate2; y axis)  
    q2=-transpose(zz)*FM2(2,:); 
    y2=(q2(1,:)+FM2(4,:))./FM2(3,:); 
    y22=transpose(y2); 

   
    rows = size(x11,1); 
    cols=19; 
    fid = fopen('grf.mot','w+','n','UTF-8'); 
    fseek(fid,0,-1); 
    fprintf(fid,'grf_fp.mot'); 
    fprintf(fid,'\r\nversion=4.3'); 
    fprintf(fid,'\r\nnRows=%d',rows); 
    fprintf(fid,'\r\nnColumns=%d',cols); 
    fprintf(fid,'\r\ninDegrees=yes'); 
    fprintf(fid,'\r\nendheader'); 

   
       fprintf(fid,'\r\ntime '); 
       fprintf(fid,'\t fp_1x'); 
       fprintf(fid,'\t fp_1y'); 
       fprintf(fid,'\t fp_1z'); 
       fprintf(fid,'\t p_1x'); 
       fprintf(fid,'\t p_1y'); 
       fprintf(fid,'\t p_1z'); 
       fprintf(fid,'\t fp_2x'); 
       fprintf(fid,'\t fp_2y'); 
       fprintf(fid,'\t fp_2z'); 
       fprintf(fid,'\t p_2x'); 
       fprintf(fid,'\t p_2y'); 
       fprintf(fid,'\t p_2z'); 
       fprintf(fid,'\t m_1x'); 
       fprintf(fid,'\t m_1y'); 
       fprintf(fid,'\t m_1z'); 
       fprintf(fid,'\t m_2x'); 
       fprintf(fid,'\t m_2y'); 
       fprintf(fid,'\t m_2z'); 
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       line_index =1; 

        
    for k=0: (rows-1) 
            fprintf(fid,'\r\n%.2f',0.01*(k+1));%time      
            fprintf(fid,'\t%.3f',-FM11(k+1,2));%f1x 
            fprintf(fid,'\t%.3f',FM11(k+1,3));%f1y 
            fprintf(fid,'\t%.3f',FM11(k+1,1));%f1z 
            fprintf(fid,'\t%.3f',-y11(k+1,1));%point1x 
            fprintf(fid,'\t%.3f',zzz(k+1,1));%point1y 
            fprintf(fid,'\t%.3f',x11(k+1,1));%point1z 
            fprintf(fid,'\t%.3f',FM22(k+1,2));%f2x 
            fprintf(fid,'\t%.3f',FM22(k+1,3));%f2y 
            fprintf(fid,'\t%.3f',-FM22(k+1,1));%f2z 
            fprintf(fid,'\t%.3f',y22(k+1,1));%point2x 
            fprintf(fid,'\t%.3f',zzz(k+1,1));%point2y 
            fprintf(fid,'\t%.3f',-x22(k+1,1));%point2z            
            fprintf(fid,'\t%.3f',-FM11(k+1,5));%t1x 
            fprintf(fid,'\t%.3f',FM11(k+1,6));%t1y 
            fprintf(fid,'\t%.3f',FM11(k+1,4));%t1z 
            fprintf(fid,'\t%.3f',FM22(k+1,5));%t2x 
            fprintf(fid,'\t%.3f',FM22(k+1,6));%t2y 
            fprintf(fid,'\t%.3f',-FM22(k+1,4));%t2z 

              
        end     
    fclose(fid); 

  

  

  

• Grfmot(to Direction 2) 

% lab to the door (Direction 2) 
fprintf('#App starting..\n\n'); 
rootpath = ''; 
%% 
if  isdeployed() 
    if (nargin<1) 
        dataPath=''; 
        msgbox('Input datapath is empty/null'); 
    end 
else 
    dataPath ='C:\Users\selin\Desktop\kd\kd1-fp.txt'; 

  
    rootpath = 'C:\Users\selin\Desktop\'; 
end 

  
if isempty(dataPath)== false 
    fprintf('loading file from %s\n',dataPath); 
    plate = dlmread(dataPath); 
    all_readings = plate(:,1:end-1); 
 end 
    readings_plate1 = all_readings(:,1:6)/20; 
    readings_plate1(:,3) = readings_plate1(:,3)*2;  
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    readings_plate11=transpose(readings_plate1); 

     
    readings_plate2 = all_readings(:,7:end)/20; 
    readings_plate2(:,3) = readings_plate2(:,3)*2; 
      readings_plate22=transpose(readings_plate2); 

     

  
    Cal_C1 = [-1281.5 -18.1 -2.3 -3.5 -7 -10.3;... 
              -26.6 1272.1 -3.3 -3.5 -4.9 -27.7;... 
              25.5 3.6 1878.8 20.6 -3.7 -12.1;... 
              3.8 -147 0.3 581.8 6.8 2.9;... 
              -146 -0.7 -0.4 2.3 402 -2.0;... 
              1.3 -3.7 -0.7 5 -0.03 295.5]; 

  
    Cal_C2 = [1510 -29 18 5 -6 -8;... 
              34 1519 1 -3 -1 -33;... 
              -33 -1 3014 23 4 -19;... 
              -5 -179 -1 789 8 3;... 
              176 0 -3 6 551 -2;... 
              0 -5 -2 1 2 354]; 

  
    FM1 = Cal_C1*readings_plate11; 
    FM2 = Cal_C2*readings_plate22; 
    FM11=transpose(FM1); 
    FM22=transpose(FM2); 
    time = size(FM22,1); 
    zz= 0.005*ones(1,time); 
    zzz=transpose(zz);   

     
   %Point force plate1 x  

   
    v1=-transpose(zz)*FM1(1,:); 
    x1=(v1(1,:)-FM1(5,:))./FM1(3,:); 
    x11=transpose(x1); 

     
   %Point force plate2 x  
    v2=-transpose(zz)*FM2(1,:); 
    x2=(v2(1,:)-FM2(5,:))./FM2(3,:); 
    x22=transpose(x2); 

     
   %Point force plate1 y  
    q1=-transpose(zz)*FM1(2,:); 
    y1=(q1(1,:)+FM1(4,:))./FM1(3,:); 
    y11=transpose(y1); 

  
    %Point force plate2 y  
    q2=-transpose(zz)*FM2(2,:); 
    y2=(q2(1,:)+FM2(4,:))./FM2(3,:); 
    y22=transpose(y2); 

  

     
    rows = size(x11,1); 
    cols=19; 
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    fid = fopen('grf.mot','w+','n','UTF-8'); 
    fseek(fid,0,-1); 
    fprintf(fid,'grf.mot'); 
    fprintf(fid,'\r\nversion=4.3'); 
    fprintf(fid,'\r\nnRows=%d',rows); 
    fprintf(fid,'\r\nnColumns=%d',cols); 
    fprintf(fid,'\r\ninDegrees=yes'); 
    fprintf(fid,'\r\nendheader'); 

   
       fprintf(fid,'\r\ntime '); 
       fprintf(fid,'\t fp_1x'); 
       fprintf(fid,'\t fp_1y'); 
       fprintf(fid,'\t fp_1z'); 
       fprintf(fid,'\t p_1x'); 
       fprintf(fid,'\t p_1y'); 
       fprintf(fid,'\t p_1z'); 
       fprintf(fid,'\t fp_2x'); 
       fprintf(fid,'\t fp_2y'); 
       fprintf(fid,'\t fp_2z'); 
       fprintf(fid,'\t p_2x'); 
       fprintf(fid,'\t p_2y'); 
       fprintf(fid,'\t p_2z'); 
       fprintf(fid,'\t m_1x'); 
       fprintf(fid,'\t m_1y'); 
       fprintf(fid,'\t m_1z'); 
       fprintf(fid,'\t m_2x'); 
       fprintf(fid,'\t m_2y'); 
       fprintf(fid,'\t m_2z'); 

          
       line_index =1; 

        
    for k=0: (rows-1) 
            fprintf(fid,'\r\n%.2f',0.01*(k+1));%time      
            fprintf(fid,'\t%.3f',FM11(k+1,2));%f1x 
            fprintf(fid,'\t%.3f',FM11(k+1,3));%f1y 
            fprintf(fid,'\t%.3f',-FM11(k+1,1));%f1z 
            fprintf(fid,'\t%.3f',y11(k+1,1));%point1x 
            fprintf(fid,'\t%.3f',zzz(k+1,1));%point1y 
            fprintf(fid,'\t%.3f',-x11(k+1,1));%point1z 
            fprintf(fid,'\t%.3f',-FM22(k+1,2));%f2x 
            fprintf(fid,'\t%.3f',FM22(k+1,3));%f2y 
            fprintf(fid,'\t%.3f',FM22(k+1,1));%f2z 
            fprintf(fid,'\t%.3f',-y22(k+1,1));%point2x 
            fprintf(fid,'\t%.3f',zzz(k+1,1));%point2y 
            fprintf(fid,'\t%.3f',x22(k+1,1));%point2z            
            fprintf(fid,'\t%.3f',FM11(k+1,5));%t1x 
            fprintf(fid,'\t%.3f',FM11(k+1,6));%t1y 
            fprintf(fid,'\t%.3f',-FM11(k+1,4));%t1z 
            fprintf(fid,'\t%.3f',-FM22(k+1,5));%t2x 
            fprintf(fid,'\t%.3f',FM22(k+1,6));%t2y 
            fprintf(fid,'\t%.3f',FM22(k+1,4));%t2z 

              
    end     
    fclose(fid); 
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H. Slope Correction Code 

clc; 
clear; 
if  isdeployed() 
    if (nargin<1) 
        dataPath=''; 
        msgbox('Input datapath is empty/null'); 
    end 
else 
  dataPath ='C:\Users\selin\Desktop\1\add.txt'; 
    rootpath = 'C:\Users\selin\Desktop\'; 
end 
 rot = dlmread(dataPath); 

  
 coefficients1 = polyfit(rot(1:1000,1), rot(1:1000,2), 1); 
 coefficients2 = polyfit(rot(1:1000,1), rot(1:1000,3), 1); 
  coefficients3 = polyfit(rot(1:1000,1), rot(1:1000,4), 1); 
  coefficients4 = polyfit(rot(1:1000,1), rot(1:1000,5), 1); 

   
% get the slope, which is the first coefficient in the array: 
slope1 = coefficients1(1); 
slope2 = coefficients2(1); 
slope3 = coefficients3(1); 
slope4 = coefficients4(1); 
new=rot; 
time = size(new,1); 

  
for i=1:time 
new(i,2)=new(i,2)-slope1*new(i,1); 
new(i,3)=new(i,3)-slope2*new(i,1); 
new(i,4)=new(i,4)-slope3*new(i,1); 
new(i,5)=new(i,5)-slope4*new(i,1); 
end 

  
xlswrite('corrected',new); 


